Multiplicative versus additive fitness and the limit of weak selection

Previously, I have discussed the importance of understanding how fitness is defined in a given model. So far, I’ve focused on how mathematically equivalent formulations can have different ontological commitments. In this post, I want to touch briefly on another concern: two different types of mathematical definitions of fitness. In particular, I will discuss additive fitness versus multiplicative fitness.[1] You often see the former in continuous time replicator dynamics and the latter in discrete time models.

In some ways, these versions are equivalent: there is a natural bijection between them through the exponential map or by taking the limit of infinitesimally small time-steps. A special case of more general Lie theory. But in practice, they are used differently in models. Implicitly changing which definition one uses throughout a model — without running back and forth through the isomorphism — can lead to silly mistakes. Thankfully, there is usually a quick fix for this in the limit of weak selection.

I suspect that this post is common knowledge. However, I didn’t have a quick reference to give to Pranav Warman, so I am writing this.
Read more of this post

Advertisements

Multiple realizability of replicator dynamics

Abstraction is my favorite part of mathematics. I find a certain beauty in seeing structures without their implementations, or structures that are preserved across various implementations. And although it seems possible to reason through analogy without (explicit) abstraction, I would not enjoy being restricted in such a way. In biology and medicine, however, I often find that one can get caught up in the concrete and particular. This makes it harder to remember that certain macro-dynamical properties can be abstracted and made independent of particular micro-dynamical implementations. In this post, I want to focus on a particular pet-peeve of mine: accounts of the replicator equation.

I will start with a brief philosophical detour through multiple realizability, and discuss the popular analogy of temperature. Then I will move on to the phenomenological definition of the replicator equation, and a few realizations. A particular target will be the statement I’ve been hearing too often recently: replicator dynamics are only true for a very large but fixed-size well-mixed population.

Read more of this post

Choosing units of size for populations of cells

Recently, I have been interacting more and more closely with experiment. This has put me in the fortunate position of balancing the design and analysis of both theoretical and experimental models. It is tempting to think of theorists as people that come up with ideas to explain an existing body of facts, and of mathematical modelers as people that try to explain (or represent) an existing experiment. But in healthy collaboration, theory and experiment should walk hand it hand. If experiments pose our problems and our mathematical models are our tools then my insistence on pairing tools and problems (instead of ‘picking the best tool for the problem’) means that we should be willing to deform both for better communication in the pair.

Evolutionary game theory — and many other mechanistic models in mathematical oncology and elsewhere — typically tracks population dynamics, and thus sets population size (or proportions within a population) as central variables. Most models think of the units of population as individual organisms; in this post, I’ll stick to the petri dish and focus on cells as the individual organisms. We then try to figure out properties of these individual cells and their interactions based on prior experiments or our biological intuitions. Experimentalists also often reason in terms of individual cells, making them seem like a natural communication tool. Unfortunately, experiments and measurements themselves are usually not about cells. They are either of properties that are only meaningful at the population level — like fitness — or indirect proxies for counts of individual cells — like PSA or intensity of fluorescence. This often makes counts of individual cells into an inferred theoretical quantity and not a direct observable. And if we are going to introduce an extra theoretical term then parsimony begs for a justification.

But what is so special about the number of cells? In this post, I want to question the reasons to focus on individual cells (at the expense of other choices) as the basic atoms of our ontology.

Read more of this post

Lotka-Volterra, replicator dynamics, and stag hunting bacteria

Happy year of the monkey!

Last time in the Petri dish, I considered the replicator dynamics between type-A and type-B cells abstractly. In the comments, Arne Traulsen pointed me to Li et al. (2015):

We have attempted something similar in spirit with bacteria. Looking at frequencies alone, it looked like coordination. But taking into account growth led to different conclusions […] In that case, things were more subtle than anticipated…

So following their spirit, I will get more concrete in this post and replace type-A by Curvibacter sp. AEP13 and type-B by Duganella sp. C1.2 — two bacteria that help fresh water Hydra avoid fungal infection. And I will also show how to extend our replicator dynamics with growth and changing cell density.

Although I try to follow Arne’s work very closely, I had not read Li et al. (2015) before, so I scheduled it for a reading group this past Friday. I really enjoyed the experiments that they conducted, but I don’t agree with their interpretations that taking growth into account leads to a different conclusion. In this post, I will sketch how they measured their experimental system and then provide a replicator equation representation of the Lotka-Volterra model they use to interpret their results. From this, we’ll be able to conclude that C and D are playing the Stag Hunt — or coordination, or assurance, pick your favorite terminology — game.

Read more of this post

Measuring games in the Petri dish

For the next couple of months, Jeffrey Peacock is visiting Moffitt. He’s a 4th year medical student at the University of Central Florida with a background in microbiology and genetic engineering of bacteria and yeast. Together with Andriy Marusyk and Jacob Scott, he will move to human cells and run some in vitro experiments with non-small cell lung cancer — you can read more about this on Connecting the Dots. Robert Vander Velde is also in the process of designing some experiments of his own. Both Jeff and Robert are interested in evolutionary game theory, so this is great opportunity for me to put my ideas on operationalization of replicator dynamics into practice.

In this post, I want to outline the basic process for measuring a game from in vitro experiments. Games in the Petri-dish. It won’t be as action packed as Agar.io — that’s an actual MMO cells-in-Petri-dish game; play here — but hopefully it will be more grounded in reality. I will introduce the gain function, show how to measure it, and stress the importance of quantifying the error on this measurement. Since this is part of the theoretical preliminaries for my collaborations, we don’t have our own data to share yet, so I will provide an illustrative cartoon with data from Archetti et al. (2015). Finally, I will show what sort of data would rule-out the theoretician’s favourite matrix games and discuss the ego-centric representation of two-strategy matrix games. The hope is that we can use this work to go from heuristic guesses at what sort of games microbes or cancer cells might play to actually measuring those games.
Read more of this post

Abusing numbers and the importance of type checking

What would you say if I told you that I could count to infinity on my hands? Infinity is large, and I have a typical number of fingers. Surely, I must be joking. Well, let me guide you through my process. Since you can’t see me right now, you will have to imagine my hands. When I hold out the thumb on my left hand, that’s one, and when I hold up the thumb and the index finger, that’s two. Actually, we should be more rigorous, since you are imagining my fingers, it actually isn’t one and two, but i and 2i. This is why they call them imaginary numbers.

Let’s continue the process of extending my (imaginary) fingers from the leftmost digits towards the right. When I hold out my whole left hand and the pinky, ring, and middle fingers on my right hand, I have reached 8i.

But this doesn’t look like what I promised. For the final step, we need to remember the geometric interpretation of complex numbers. Multiplying by i is the same thing as rotating counter-clockwise by 90 degrees in the plane. So, let’s rotate our number by 90 degrees and arrive at \infty.

I just counted to infinity on my hands.

Of course, I can’t stop at a joke. I need to overanalyze it. There is something for scientists to learn from the error that makes this joke. The disregard for the type of objects and jumping between two different — and usually incompatible — ways of interpreting the same symbol is something that scientists, both modelers and experimentalists, have to worry about it.

Rigorous proof

If you want an actually funny joke of this type then I recommend the image of a ‘rigorous proof’ above that was tweeted by Moshe Vardi. My writen version was inspired by a variant on this theme mentioned on Reddit by jagr2808.

I will focus this post on the use of types from my experience with stoichiometry in physics. Units in physics allow us to perform sanity checks after long derivations, imagine idealized experiments, and can even suggest refinements of theory. These are all features that evolutionary game theory, and mathematical biology more broadly, could benefit from. And something to keep in mind as clinicians, biologists, and modelers join forces this week during the 5th annual IMO Workshop at the Moffitt Cancer Center.

Read more of this post

Operationalizing the local environment for replicator dynamics

Recently, Jake Taylor-King arrived in Tampa and last week we were brainstorming some projects to work on together. In the process, I dug up an old idea I’ve been playing with as my understanding of the Ohtsuki-Nowak transform matured. The basic goal is to work towards an operational account of spatial structure without having to commit ourselves to a specific model of space. I will take replicator dynamics and work backwards from them, making sure that each term we use can be directly measured in a single system or abducted from the other measurements. The hope is that if we start making such measurements then we might see some empirical regularities which will allow us to link experimental and theoretical models more closely without having to make too many arbitrary assumptions. In this post, I will sketch the basic framework and then give an example of how some of the spatial features can be measured from a sample histology.
Read more of this post

Operationalizing replicator dynamics and partitioning fitness functions

As you know, dear regular reader, I have a rather uneasy relationship with reductionism, especially when doing mathematical modeling in biology. In mathematical oncology, for example, it seems that there is a hope that through our models we can bring a more rigorous mechanistic understanding of cancer, but at the same time there is the joke that given almost any microscopic mechanism there is an experimental paper in the oncology literature supporting it and another to contradict it. With such a tenuous and shaky web of beliefs justifying (or just hinting towards) our nearly arbitrary microdynamical assumptions, it seems unreasonable to ground our models in reductionist stories. At such a time of ontological crisis, I have an instinct to turn — much like many physicists did during a similar crisis at the start of the 20th century in their discipline — to operationalism. Let us build a convincing mathematical theory of cancer in the petri dish with as few considerations of things we can’t reliably measure and then see where to go from there. To give another analogy to physics in the late 1800s, let us work towards a thermodynamics of cancer and worry about its many possible statistical mechanics later.

This is especially important in applications of evolutionary game theory where assumptions abound. These assumptions aren’t just about modeling details like the treatments of space and stochasticity or approximations to them but about if there is even a game taking place or what would constitute a game-like interaction. However, to work toward an operationalist theory of games, we need experiments that beg for EGT explanations. There is a recent history of these sort of experiments in viruses and microbes (Lenski & Velicer, 2001; Crespi, 2001; Velicer, 2003; West et al., 2007; Ribeck & Lenski, 2014), slime molds (Strassmann & Queller, 2011) and yeast (Gore et al., 2009; Sanchez & Gore, 2013), but the start of these experiments in oncology by Archetti et al. (2015) is current events[1]. In the weeks since that paper, I’ve had a very useful reading group and fruitful discussions with Robert Vander Velde and Julian Xue about the experimental aspects of this work. This Monday, I spent most of the afternoon discussing similar experiments with Robert Noble who is visiting Moffitt from Montpellier this week.

In this post, I want to unlock some of this discussion from the confines of private emails and coffee chats. In particular, I will share my theorist’s cartoon understanding of the experiments in Archetti et al. (2015) and how they can help us build an operationalist approach to EGT but how they are not (yet) sufficient to demonstrate the authors’ central claim that neuroendocrine pancreatic cancer dynamics involve a public good.
Read more of this post

Evolutionary game theory without interactions

When I am working on evolutionary game theory, I usually treat the models I build as heuristics to guide intuitions and push the imagination. But working on something as practical as cancer, and being in a department with many physics-trained colleagues puts pressure on me to think of moving more towards insilications or abductions. Now, Philip Gerlee and Philipp Altrock are even pushing me in that direction with their post on TheEGG. So this entry might seem a bit uncharacteristic, I will describe an experiment — at least as a theorist like me imagines them.

Consider the following idealized protocol that is loosely inspired by Archetti et al. (2015) and the E. coli Long-term evolution experiment (Lenski et al., 1991; Wiser et al., 2013; Ribeck & Lenski, 2014). We will (E1) take a new petri dish or plate; (E2) fill it with a fixed mix of nutritional medium like fetal bovine serum; (E3) put a known number N of two different cell types A and B on the medium (on the first plate we will also know the proportion of A and B in the mixture); (E4) let them grow for a fixed amount of time T which will be on the order of a cell cycle (or two); (E5) scrape the cells off the medium; and (E6) return to step (E1) while selecting N cells at random from the ones we got in step (E5) to seed step (E3). Usually, you would use this procedure to see how A-cells and B-cells compete with each other, as Archetti et al. (2015). However, what would it look like if the cells don’t compete with each other? What if they produce no signalling molecules — in fact, if they excrete nothing into the environment, to avoid cross-feeding interactions — and don’t touch each other? What if they just sit there independently eating their very plentiful nutrient broth?[1]

Would you expect to see evolutionary game dynamics between A and B? Obviously, since I am asking, I expect some people to answer ‘no’ and then be surprised when I derive some math to show that the answer can be ‘yes’. So, dear reader, humour me by being surprised.
Read more of this post

Memes, compound strategies, and factoring the replicator equation

When you work with evolutionary game theory for a while, you end up accumulating an arsenal of cute tools and tricks. A lot of them are obvious once you’ve seen them, but you usually wouldn’t bother looking for them if you hadn’t know they existed. In particular, you become very good friends with the replicator equation. A trick that I find useful at times — and that has come up recently in my on-going project with Robert Vander Veldge, David Basanta, and Jacob Scott — is nesting replicator dynamics (or the dual notion of factoring the replicator equation). I wanted to share a relatively general version of this trick with you, and provide an interpretation of it that is of interest to people — like me — who care about the interaction of evolution in learning. In particular, we will consider a world of evolving agents where each agent is complex enough to learn through reinforcement and pass its knowledge to its offspring. We will see that in this setting, the dynamics of the basic ideas — or memes — that the agents consider can be studied in a world of selfish memes independent of the agents that host them.
Read more of this post