## Replicator dynamics and the simplex as a vector space

December 1, 2017 1 Comment

Over the years of TheEGG, I’ve chronicled a number of nice properties of the replicator equation and its wide range of applications. From a theoretical perspective, I showed how the differential version can serve as the generator for the action that is the finite difference version of replicator dynamics. And how measurements of replicator dynamics can correspond to log-odds. From an application perspective, I talked about how replicator dynamics can be realized in many different ways. This includes a correspondance to idealized replating experiments and a representation of populations growing toward carrying capacity via fictitious free-space strategies. These fictitious strategies are made apparent by using a trick to factor and nest the replicator dynamics. The same trick can also help us to use the symmetries of the fitness functions for dimensionality reduction and to prove closed orbits in the dynamics. And, of course, I discussed countless heuristic models and some abductions that use replicator dynamics.

But whenever some object becomes so familiar and easy to handle, I get worried that I am missing out on some more foundational and simple structure underlying it. In the case of replicator dynamics, Tom Leinster’s post last year on the n-Category Cafe pointed me to the simple structure that I was missing: the vector space structure of the simplex. This allows us to use linear algebra — the friendliest tool in the mathematician’s toolbox — in a new way to better understand evolutionary dynamics.

Given my interest in operationalization of replicator dynamics, I will use some of the terminology and order of presentation from Aitchison’s (1986) statistical analysis of compositional data. We will see that a number of operations that we define will have clear experimental and evolutionary interpretations.

I can’t draw any real conclusions from this, but I found it worth jotting down for later reference. If you can think of a way to make these observations useful then please let me know.

## Ontology of player & evolutionary game in reductive vs effective theory

November 4, 2017 by Artem Kaznatcheev 2 Comments

In my views of game theory, I largely follow Ariel Rubinstein: game theory is a set of fables. A collection of heuristic models that helps us structure how we make sense of and communicate about the world. Evolutionary game theory was born of classic game theory theory through a series of analogies. These analogies are either generalizations or restrictions of the theory depending on if you’re thinking about the stories or the mathematics. Given this heuristic genealogy of the field — and my enjoyment of heuristic models — I usually do not worry too much about what exactly certain ontic terms like strategy, player, or game

really meanor refer to. I am usually happy to leave these terms ambiguous so that they can motivate different readers to have different interpretations and subsequently push for different models of different experiments. I think it is essential for heuristic theories to foster this diverse creativity. Anything goes.However, not everyone agrees with Ariel Rubinstein and me; some people think that EGT isn’t “just” heuristics. In fact, more recently, I have also shifted some of my uses of EGT from heuristics to abductions. When this happens, it is no longer acceptable for researchers to be willy-nilly with fundamental objects of the theory: strategies, players, and games.

The biggest culprit is the player. In particular, a lot of confusion stems from saying that “cells are players”. In this post, I’d like to explore two of the possible positions on what constitutes players and evolutionary games.

Read more of this post

Filed under Commentary, Preliminary Tagged with fitness ontology, metamodeling, operationalization, philosophy of science, replicator dynamics