Don’t take Pokemon Go for dead: a model of product growth

In the last month, some people wrote about the decay in active users for Pokemon Go after its first month, in a tone that presents the game as likely a mere fad – with article on 538, cinemablend and Bloomberg, for example. “Have you deleted Pokémon Go yet?” was even trending on Twitter. Although it is of course certainly possible that this ends up being an accurate description for the game, I posit that such conclusions are rushed. To do so, I examine some systemic reasons that would make the Pokemon Go numbers for August be inevitably lower than those for July, without necessarily implying that the game is doomed to dwindle into irrelevance.

Students in Waterloo playing Pokemon Go. Photo courtesy of Maylin Cui.

Students in Waterloo playing Pokemon Go. Photo courtesy of Maylin Cui.

Others have made similar points before – see this article and the end of this one for example. However, in the spirit of TheEGG, and unlike what most of the press articles can afford to do, we’ll bring some mathematical modeling into our arguments.
Read more of this post

Five motivations for theoretical computer science

There are some situations, perhaps lucky ones, where it is felt that an activity needs no external motivation or justification.  For the rest, it can be helpful to think of what the task at hand can be useful for. This of course doesn’t answer the larger question of what is worth doing, since it just distributes the burden somewhere else, but establishing these connections seems like a natural part of an answer to the larger question.

Along those lines, the following are five intellectual areas for whose study theoretical computer science concepts and their development can be useful – therefore, a curiosity about these areas can provide some motivation for learning about those cstheory concepts or developing them. They are arranged from the likely more obvious to most people to the less so: technology, mathematics, science, society, and philosophy. This post could also serve as an homage to delayed gratification (perhaps with some procrastination mixed in), having been finally written up more than three years after first discussing it with Artem.

Read more of this post

Should we be astonished by the Principle of “Least” Action?

QuinceyFig2As one goes through more advanced expositions of quantum physics, the concept of action is gradually given more importance, with it being considered a fundamental piece in some introductions to Quantum Field Theory (Zee, 2003) through the use of the path integral approach. The basic idea behind using the action is to assign a number to each possible state of a system. The function that does so is named the Lagrangian function, and it encodes the physics of the system (i.e. how do different parts of the system affect each other). Then, to a trajectory of a system we associate the integral of this number over all the states in the trajectory. This contrasts with the classical Newtonian approach, where we study a system by specifying all the possible ways in which parts of the system exercise forces on each other (i.e. affect each other’s acceleration). Using the action usually results in nicer mathematics, while I’d argue that the Newtonian approach requires less training to feel intuitive.

In many of the expositions of the use of action in physics (see e.g. this one), I perceive an attempt at transmitting wonder about the world being such that it minimizes a function on its trajectory. This has indeed been the case historically, with Maupertuis supposed to have considered action minimization (and the corresponding unification of minimization principles between optics and mechanics) as the most definite proof available to him of the existence of God. However, along the spirit of this stack exchange question, I never really understood why such a wonder should be felt, even setting aside the fact that it assumes that our equations “are” the world, a perspective that Artem has criticized at length before.
Read more of this post