Heuristic models as inspiration-for and falsifiers-of abstractions

Last month, I blogged about abstraction and lamented that abstract models are lacking in biology. Here, I want to return to this.

What isn’t lacking in biology — and what I also work on — is simulation and heuristic models. These can seem abstract in the colloquial sense but are not very abstract for a computer scientist. They are usually more idealizations than abstractions. And even if all I care about is abstract models — which I can reasonably be accused of at times — then heuristic models should still be important to me. Heuristics help abstractions in two ways: portfolios of heuristic models can inspire abstractions, and single heuristic models can falsify abstractions.

In this post, I want to briefly discuss these two uses for heuristic models. In the process, I will try to make it a bit more clear as to what I mean by a heuristic model. I will do this with metaphors. So I’ll produce a heuristic model of heuristic models. And I’ll use spatial structure and the evolution of cooperation as a case study.

Read more of this post

Advertisements

Double-entry bookkeeping and Galileo: abstraction vs idealization

Two weeks ago, I wrote a post on how abstract is not the opposite of empirical. In that post, I distinguished between the colloquial meaning of abstract and the ‘true’ meaning used by computer scientists. For me, abstraction is defined by multiple realizability. An abstract object can have many implementations. The concrete objects that implement an abstraction might differ from each other in various — potentially drastic — ways but if the implementations are ‘correct’ then the ways in which they differ are irrelevant to the conclusions drawn from the abstraction.

I contrasted this comp sci view with a colloquial sense that I attributed to David Basanta. I said this colloquial sense was just that an abstract model is ‘less detailed’.

In hindsight, I think this colloquial sense was a straw-man and doesn’t do justice to David’s view. It isn’t ignoring any detail that makes something colloquially abstract. Rather, it is ignoring ‘the right sort of’ detail in the ‘right sort of way’. It is about making an idealization meant to arrive at some essence of a (class of) object(s) or a process. And this idealization view of abstraction has a long pedigree.

In this post, I want to provide a semi-historical discussion of the the difference between (comp sci) abstraction vs idealization. I will focus on double-entry bookkeeping as a motivation. Now, this might not seem relevant to science, but for Galileo it was relevant. He expressed his views on (proto-)scientific abstraction by analogy to bookkeeping. And in expressing his view, he covered both abstraction and idealization. In the process, he introduced both good ideas and bad ones. They remain with us today.

Read more of this post

Abstract is not the opposite of empirical: case of the game assay

Last week, Jacob Scott was at a meeting to celebrate the establishment of the Center for Evolutionary Therapy at Moffitt, and he presented our work on measuring the effective games that non-small cell lung cancer plays (see this preprint for the latest draft). From the audience, David Basanta summarized it in a tweet as “trying to make our game theory models less abstract”. But I actually saw our work as doing the opposite (and so quickly disagreed).

However, I could understand the way David was using ‘abstract’. I think I’ve often used it in this colloquial sense as well. And in that sense it is often the opposite of empirical, which is seen as colloquially ‘concrete’. Given my arrogance, I — of course — assume that my current conception of ‘abstract’ is the correct one, and the colloquial sense is wrong. To test myself: in this post, I will attempt to define both what ‘abstract’ means and how it is used colloquially. As a case study, I will use the game assay that David and I disagreed about.

This is a particularly useful exercise for me because it lets me make better sense of how two very different-seeming aspects of my work — the theoretical versus the empirical — are both abstractions. It also lets me think about when simple models are abstract and when they’re ‘just’ toys.

Read more of this post

Token vs type fitness and abstraction in evolutionary biology

There are only twenty-six letters in the English alphabet, and yet there are more than twenty-six letters in this sentence. How do we make sense of this?

Ever since I first started collaborating with David Basanta and Jacob Scott back in 2012/13, a certain tension about evolutionary games has been gnawing at me. A feeling that a couple of different concepts are being swept up under the rug of a single name.[1] This feeling became stronger during my time at Moffitt, especially as I pushed for operationalizing evolutionary games. The measured games that I was imagining were simply not the same sort of thing as the games implemented in agent-based models. Finally this past November, as we were actually measuring the games that cancer plays, a way to make the tension clear finally crystallized for me: the difference between reductive and effective games could be linked to two different conceptions of fitness.

This showed a new door for me: philosophers of biology have already done extensive conceptual analysis of different versions of fitness. Unfortunately, due to various time pressures, I could only peak through the keyhole before rushing out my first draft on the two conceptions of evolutionary games. In particular, I didn’t connect directly to the philosophy literature and just named the underlying views of fitness after the names I’ve been giving to the games: reductive fitness and effective fitness.

Now, after a third of a year busy teaching and revising other work, I finally had a chance to open that door and read some of the philosophy literature. This has provided me with a better vocabulary and clearer categorization of fitness concepts. Instead of defining reductive vs effective fitness, the distinction I was looking for is between token fitness and type fitness. And in this post, I want to discuss that distinction. I will synthesize some of the existing work in a way that is relevant to separating reductive vs. effective games. In the process, I will highlight some missing points in the current debates. I suspect this points have been overlooked because most of the philosophers of biology are focused more on macroscopic organisms instead of the microscopic systems that motivated me.[2]

Say what you will of birds and ornithology, but I am finding reading philosophy of biology to be extremely useful for doing ‘actual’ biology. I hope that you will, too.

Read more of this post

Symmetry breaking and non-cell-autonomous growth rates in cancer

“You can’t step in the same river twice” might seem like an old aphorism of little value, but I think it is central to making sense of the sciences. This is especially clear if we rephrase it as: “you can’t do the same experiment twice”. After all, a replication experiment takes place at a different time, sometimes a different place, maybe done by a different experimenter. Why should any of the countless rules that governed the initial experiment still hold for the replicate? But our methodology demands that we must be able to repeat experiments. We achieve by making a series of symmetry assumptions. For example: the universality or homogeneity of physical laws. We can see this with early variants of the principle of sufficient reason in Anaximander and Aristotle. It developed closer to the modern statements with Galileo, Copernicus and Newton by pushing the laws of physics outside the sublunary sphere and suggesting that the planets follows the same laws as the apple. In fact, Alfred North Whitehead considered a belief in trustworthy uniformity of physical laws to be the defining feature of western philosophy (and science) since Thales.

In this post, I want to go through some of the symmetries we assume and how to break them. And I want to discuss this at levels from grand cosmology to the petri dish. In the process, I’ll touch on the fundamental constants of physics, how men stress out mice, and how standard experimental practices in cancer biology assume a cell-autonomous process symmetry.

Read more of this post

Deadlock & Leader as deformations of Prisoner’s dilemma & Hawk-Dove games

Recently, I’ve been working on revisions for our paper on measuring the games that cancer plays. One of the concerns raised by the editor is that we don’t spend enough time introducing game theory and in particular the Deadlock and Leader games that we observed. This is in large part due to the fact that these are not the most exciting games and not much theoretic efforts have been spent on them in the past. In fact, none that I know of in mathematical oncology.

With that said, I think it is possible to relate the Deadlock and Leader games to more famous games like Prisoner’s dilemma and the Hawk-Dove games; both that I’ve discussed at length on TheEGG. Given that I am currently at the Lorentz Center in Leiden for a workshop on Understanding Cancer Through Evolutionary Game Theory (follow along on twitter via #cancerEGT), I thought it’d be a good time to give this description here. Maybe it’ll inspire some mathematical oncologists to play with these games.

Read more of this post

Replicator dynamics and the simplex as a vector space

Over the years of TheEGG, I’ve chronicled a number of nice properties of the replicator equation and its wide range of applications. From a theoretical perspective, I showed how the differential version can serve as the generator for the action that is the finite difference version of replicator dynamics. And how measurements of replicator dynamics can correspond to log-odds. From an application perspective, I talked about how replicator dynamics can be realized in many different ways. This includes a correspondance to idealized replating experiments and a representation of populations growing toward carrying capacity via fictitious free-space strategies. These fictitious strategies are made apparent by using a trick to factor and nest the replicator dynamics. The same trick can also help us to use the symmetries of the fitness functions for dimensionality reduction and to prove closed orbits in the dynamics. And, of course, I discussed countless heuristic models and some abductions that use replicator dynamics.

But whenever some object becomes so familiar and easy to handle, I get worried that I am missing out on some more foundational and simple structure underlying it. In the case of replicator dynamics, Tom Leinster’s post last year on the n-Category Cafe pointed me to the simple structure that I was missing: the vector space structure of the simplex. This allows us to use linear algebra — the friendliest tool in the mathematician’s toolbox — in a new way to better understand evolutionary dynamics.

A 2-simplex with some of its 1-dimensional linear subspaces drawn by Greg Egan.

Given my interest in operationalization of replicator dynamics, I will use some of the terminology and order of presentation from Aitchison’s (1986) statistical analysis of compositional data. We will see that a number of operations that we define will have clear experimental and evolutionary interpretations.

I can’t draw any real conclusions from this, but I found it worth jotting down for later reference. If you can think of a way to make these observations useful then please let me know.

Read more of this post

Dark selection from spatial cytokine signaling networks

Greetings, Theory, Evolution, and Games Group! It’s a pleasure to be on the other side of the keyboard today. Many thanks to Artem for the invite to write about some of our recent work and the opportunity to introduce myself via this post. I do a bit of blogging of my own over at vcannataro.com — mostly about neat science I stumble over while figuring out my way.

I’m a biologist. I study the evolutionary dynamics within somatic tissue, or, how mutations occur, compete, accumulate, and persist in our tissues, and how these dynamics manifest as aging and cancer (Cannataro et al., 2017a). I also study the evolutionary dynamics within tumors, and the evolution of resistance to targeted therapy (Cannataro et al., 2017b).

In November 2016 I attended the Integrated Mathematical Oncology Workshop on resistance, a workweek-long intensive competitive workshop where winners receive hard-earned $$ for research, and found myself placed in #teamOrange along with Artem. In my experience at said workshop (attended 2015 and 2016), things usually pan out like this: teams of a dozen or so members are assembled by the workshop organizers, insuring a healthy mix of background-education heterogeneity among groups, and then after the groups decide on a project they devise distinct but intersecting approaches to tackle the problem at hand. I bounced around a bit early on within #teamOrange contributing to our project where I could, and when the need for a spatially explicit model of cytokine diffusion and cell response came up I jumped at the opportunity to lead that endeavor. I had created spatially explicit cellular models before — such as a model of cell replacement in the intestinal crypt (Cannataro et al., 2016) — but never one that incorporated the diffusion or spread of some agent through the space. That seemed like a pretty nifty tool to add to my research kit. Fortunately, computational modeler extraordinaire David Basanta was on our team to teach me about modeling diffusion (thanks David!).

Below is a short overview of the model we devised.

Read more of this post

Ratcheting and the Gillespie algorithm for dark selection

In Artem’s previous post about the IMO workshop he suggests that “[s]ince we are forced to move from the genetic to the epigenetic level of description, it becomes important to suggest a plausible mechanism for heritable epigenetic effects. We need to find a stochastic ratcheted phenotypic switch among the pathways of the CMML cells.” Here I’ll go into more detail about modeling this ratcheting and how to go about identifying the mechanism. We can think of this as a potential implementation of the TYK bypass in the JAK-STAT pathway described experimentally by Koppikar et al. (2012). However, I won’t go into the specifics of exact molecules, keeping to the abstract essence.

After David Robert Grime’s post on oxygen use, this is the third entry in our series on dark selection in chronic myelomonocytic leukemia (CMML). We have posted a preprint (Kaznatcheev et al., 2017) on our project to BioRxiv and section 3.1 therein follows this post closely.

Read more of this post

Identifying therapy targets & evolutionary potentials in ovarian cancer

For those of us attending the 7th annual Integrated Mathematical Oncology workshop (IMO7) at the Moffitt Cancer Center in Tampa, this week was a gruelling yet exciting set of four near-all-nighters. Participants were grouped into five teams and were tasked with coming up with a new model to elucidate a facet of a particular type of cancer. With $50k on the line and enthusiasm for creating evolutionary models, Team Orange (the wonderful team I had the privilege of being a part of) set out to understand something new about ovarian cancer. In this post, I will outline my perspective on the initial model we came up with over the past week.

Read more of this post