Effective games from spatial structure
December 7, 2018 3 Comments
For the last week, I’ve been at the Institute Mittag-Leffler of the Royal Swedish Academy of Sciences for their program on mathematical biology. The institute is a series of apartments and a grand mathematical library located in the suburbs of Stockholm. And the program is a mostly unstructured atmosphere — with only about 4 hours of seminars over the whole week — aimed to bring like-minded researchers together. It has been a great opportunity to reconnect with old colleagues and meet some new ones.
During my time here, I’ve been thinking a lot about effective games and the effects of spatial structure. Discussions with Philip Gerlee were particularly helpful to reinvigorate my interest in this. As part of my reflection, I revisited the Ohtsuki-Nowak (2006) transform and wanted to use this post to share a cute observation about how space can create an effective game where there is no reductive game.
Suppose you were using our recent game assay to measure an effective game, and you got the above left graph for the fitness functions of your two types. On the x-axis, you have seeding proportion of type C and on the y-axis you have fitness. In cyan you have the measured fitness function for type C and in magenta, you have the fitness function for type D. The particular fitnesses scale of the y-axis is not super important, not even the x-intercept — I’ve chosen them purely for convenience. The only important aspect is that the cyan and magenta lines are parallel, with a positive slope, and the magenta above the cyan.
This is not a crazy result to get, compare it to the fitness functions for the Alectinib + CAF condition measured in Kaznatcheev et al. (2018) which is shown at right. There, cyan is parental and magenta is resistant. The two lines of best fit aren’t parallel, but they aren’t that far off.
How would you interpret this sort of graph? Is there a game-like interaction happening there?
Of course, this is a trick question that I give away by the title and set-up. The answer will depend on if you’re asking about effective or reductive games, and what you know about the population structure. And this is the cute observation that I want to highlight.




Causes and costs in biological vs clinical resistance
December 14, 2018 by Artem Kaznatcheev Leave a comment
This Wednesday, on These few lines, Rob Noble warned of the two different ways in which the term de novo resistance is used by biologists and clinicians. The biologist sees de novo resistance as new genetic resistance arising after treatment has started. The clinician sees de novo resistance as a tumour that is not responsive to treatment from the start. To make matters even more confusing, Hitesh Mistry points to a further interpretation among pharmocologists: they refer to the tumour remaining after a partial but incomplete response to treatment as de novo resistant. Clearly this is a mess!
But I think this is an informative mess. I don’t think it is a matter of people accidentally overloading the same word. Instead, I think it reflects a conceptual difference in how biologists and clinicians think about resistance. A difference that is a bit akin to the difference between reductive and effective theories. It is also a difference that I had to deal with during the revisions of our recent work on measuring the games played by treatment sensitive and treatment resistance non-small cell lung cancer (Kaznatcheev et al., 2018).
Read more of this post
Filed under Commentary, Preliminary Tagged with mathematical oncology, operationalization