Ontology of player & evolutionary game in reductive vs effective theory

In my views of game theory, I largely follow Ariel Rubinstein: game theory is a set of fables. A collection of heuristic models that helps us structure how we make sense of and communicate about the world. Evolutionary game theory was born of classic game theory theory through a series of analogies. These analogies are either generalizations or restrictions of the theory depending on if you’re thinking about the stories or the mathematics. Given this heuristic genealogy of the field — and my enjoyment of heuristic models — I usually do not worry too much about what exactly certain ontic terms like strategy, player, or game really mean or refer to. I am usually happy to leave these terms ambiguous so that they can motivate different readers to have different interpretations and subsequently push for different models of different experiments. I think it is essential for heuristic theories to foster this diverse creativity. Anything goes.

However, not everyone agrees with Ariel Rubinstein and me; some people think that EGT isn’t “just” heuristics. In fact, more recently, I have also shifted some of my uses of EGT from heuristics to abductions. When this happens, it is no longer acceptable for researchers to be willy-nilly with fundamental objects of the theory: strategies, players, and games.

The biggest culprit is the player. In particular, a lot of confusion stems from saying that “cells are players”. In this post, I’d like to explore two of the possible positions on what constitutes players and evolutionary games.

Read more of this post

Advertisements

Hackathons and a brief history of mathematical oncology

It was Friday — two in the morning. And I was busy fine-tuning a model in Mathematica and editing slides for our presentation. My team and I had been running on coffee and snacks all week. Most of us had met each other for the first time on Monday, got an inkling of the problem space we’d be working on, brainstormed, and hacked together a number of equations and a few chunks of code to prototype a solution. In seven hours, we would have to submit our presentation to the judges. Fifty thousand dollars in start-up funding was on the line.

A classic hackathon, except for one key difference: my team wasn’t just the usual mathematicians, programmers, computer & physical scientists. Some of the key members were biologists and clinicians specializing in blood cancers. And we weren’t prototyping a new app. We were trying to predict the risk of relapse for patients with chronic myeloid leukemia, who had stopped receiving imatinib. This was 2013 and I was at the 3rd annual integrated mathematical oncology workshop. It was one of my first exposures to using mathematical and computational tools to study cancer; the field of mathematical oncology.

As you can tell from other posts on TheEGG, I’ve continued thinking about and working on mathematical oncology. The workshops have also continued. The 7th annual IMO workshop — focused on stroma this year — is starting right now. If you’re not in Tampa then you can follow #MoffittIMO on twitter.

Since I’m not attending in person this year, I thought I’d provide a broad overview based on an article I wrote for Oxford Computer Science’s InSPIRED Research (see pg. 20-1 of this pdf for the original) and a paper by Helen Byrne (2010).

Read more of this post

Poor reasons for preprints & post-publication peer-review

Last week, I revived the blog with some reflections on open science. In particular, I went into the case for pre-prints and the problem with the academic publishing system. This week, I want to continue this thread by examining three common arguments for preprints: speed, feedback, and public access. I think that these arguments are often motivated in the wrong way. In their standard presentation, they are bad arguments for a good idea. By pointing out these perceived shortcoming, I hope that we can develop more convincing arguments for preprints. Or maybe methods of publication that are even better than the current approach to preprints.

These thoughts are not completely formed, and I am eager to refine them in follow up posts. As it stand, this is more of a hastily written rant.

Read more of this post

Preprints and a problem with academic publishing

This is the 250th post on the Theory, Evolutionary, and Games Group Blog. And although my posting pace has slowed in recent months, I see this as a milestone along the continuing road of open science. And I want to take this post as an opportunity to make some comments on open science.

To get this far, I’ve relied on a lot of help and encouragement. Both directly from all the wonderful guest posts and comments, and indirectly from general recognition. Most recently, this has taken the form of the Canadian blogging and science outreach network Science Borealis recognized us as one of the top 12 science blogs in Canada.

Given this connection, it is natural to also view me as an ally of other movements associated with open science; like, (1) preprints and (2) post-publication peer-review (PPPR). To some extent, I do support both of these activities. First, I regularly post my papers to ArXiv & BioRxiv. Just in the two preceeding months, I’ve put out a paper on the complexity of evolutionary equilibria and joint work on how fibroblasts and alectinib switch the games that cancers play. Another will follow later this month based on our project during the 2016 IMO Workshop. And I’ve been doing this for a while: the first draft of my evolutionary equilibria paper, for example, is older than BioRxiv — which only launched in November 2013. More than 20 years after physicists, mathematicians, and computer scientists started using ArXiv.

Second, some might think of my blog posts as PPPRs. For example. occasionally I try to write detailed comments on preprints and published papers. For example, my post on fusion and sex in proto-cells commenting on a preprint by Sam Sinai, Jason Olejarz and their colleagues. Finally, I am impressed and made happy by the now iconic graphic on the growth of preprints in biology.

But that doesn’t mean I find these ideas to be beyond criticism, and — more importantly — it doesn’t mean that there aren’t poor reasons for supporting preprints and PPPR.

Recently, I’ve seen a number of articles and tweets written on this topic both for and against (or neutral toward) pre-prints and for PPPR. Even Nature is telling us to embrace preprints. In the coming series of posts, I want to share some of my reflections on the case for preprints, and also argue that there isn’t anything all that revolutionary or transformative in them. If we want progress then we should instead think in terms of working papers. And as for post-publications peer review — instead, we should promote a culture of commentaries, glosses, and literature review/synthesis.

Currently, we do not publish papers to share ideas. We have ideas just to publish papers. And we need to change this aspect academic culture.

In this post, I will sketch some of the problems with academic publishing. Problems that I think any model of sharing results will have to address.

Read more of this post

Spatializing the Go-vs-Grow game with the Ohtsuki-Nowak transform

Recently, I’ve been thinking a lot about small projects to get students started with evolutionary game theory. One idea that came to mind is to look at games that have been analyzed in the inviscid regime then ‘spatialize’ them and reanalyze them. This is usually not difficult to do and provides some motivation to solving for and making sense of the dynamic regimes of a game. And it is not always pointless, for example, our edge effects paper (Kaznatcheev et al, 2015) is mostly just a spatialization of Basanta et al.’s (2008a) Go-vs-Grow game together with some discussion.

Technically, TheEGG together with that paper have everything that one would need to learn this spatializing technique. However, I realized that my earlier posts on spatializing with the Ohtsuki-Nowak transform might a bit too abstract and the paper a bit too terse for a student who just started with EGT. As such, in this post, I want to go more slowly through a concrete example of spatializing an evolutionary game. Hopefully, it will be useful to students. If you are a beginner to EGT that is reading this post, and something doesn’t make sense then please ask for clarification in the comments.

I’ll use the Go-vs-Grow game as the example. I will focus on the mathematics, and if you want to read about the biological or oncological significance then I encourage you to read Kaznatcheev et al. (2015) in full.
Read more of this post

Antoni Gaudi and learning algorithms from Nature

Happy holidays.

A few days ago, I was exploring Barcelona. This means that I saw a lot of architecture by Antoni Gaudi. His works have a very distinct style; their fluid lines, bright colours, myriad materials, and interface of design and function make for very naturesque buildings. They are unique and stand in sharp contrast to the other — often Gothic revival and Catalan Modernisme — architecture around them. The contrast is conscious; when starting out, Gaudi learned the patterns of the neo-Gothic architecture then in vogue and later commented on it:

Gothic art is imperfect, only half resolved; it is a style created by the compasses, a formulaic industrial repetition. Its stability depends on constant propping up by the buttresses: it is a defective body held up on crutches. … The proof that Gothic works are of deficient plasticity is that they produce their greatest emotional effect when they are mutilated, covered in ivy and lit by the moon.

His buildings, however, do not need to be overgrown by ivy, for Gaudi already incorporates nature in their design. I felt this connection most viscerally when touring the attic of Casa Mila. The building was commissioned as an apartment for local bourgeois to live comfortably on the ground floor off the rents they collected from the upper floors. And although some of the building is still inhabited by businesses and private residence, large parts of it have been converted into a museum. The most famous part among tourists is probably the uneven organic roof with its intricate smoke stacks, ventilation shafts, and archways for framing other prominent parts of Barcelona.

This uneven roof is supported by an attic that houses an exhibit on Gaudi’s method. Here, I could see Gaudi’s inspiration. On display was a snake’s skeleton and around me were the uneven arches of the attic — the similarity was palpable (see below). The questions for me were: was Gaudi inspired by nature or did he learn from it? Is there even much of a difference between ‘inspired’ and ‘learned’? And can this inform thought on the correspondence between nature and algorithms more generally?

naturalarches

I spend a lot of time writing about how we can use algorithmic thinking to understand aspects of biology. It is much less common for me to write about how we can use biology or nature to understand and inspire algorithms. In fact, I feel surprisingly strong skepticism towards the whole field of natural algorithms, even when I do write about it. I suspect that this stems from my belief that we cannot learn algorithms from nature. A belief that was shaken, but not overturned, when I saw the snake’s skeleton in Gaudi’s attic. In this post, I will try to substantiate the statement that we cannot learn algorithms from nature. My hope is that someone, or maybe just the act of writing, will convince me otherwise. I’ll sketch my own position on algorithms & nature, and strip the opposing we-learn-algorithms-from-nature position of some of its authority by pulling on a historic thread that traces this belief from Plato through Galileo to now. I’ll close with a discussion of some practical consequences of this metaphysical disagreement and try to make sense of Gaudi’s work from my perspective.

Read more of this post

Fusion and sex in protocells & the start of evolution

In 1864, five years after reading Darwin’s On the Origin of Species, Pyotr Kropotkin — the anarchist prince of mutual aid — was leading a geographic survey expedition aboard a dog-sleigh — a distinctly Siberian variant of the HMS Beagle. In the harsh Manchurian climate, Kropotkin did not see competition ‘red in tooth and claw’, but a flourishing of cooperation as animals banded together to survive their environment. From this, he built a theory of mutual aid as a driving factor of evolution. Among his countless observations, he noted that no matter how selfish an animal was, it still had to come together with others of its species, at least to reproduce. In this, he saw both sex and cooperation as primary evolutionary forces.

Now, Martin A. Nowak has taken up the challenge of putting cooperation as a central driver of evolution. With his colleagues, he has tracked the problem from myriad angles, and it is not surprising that recently he has turned to sex. In a paper released at the start of this month, Sam Sinai, Jason Olejarz, Iulia A. Neagu, & Nowak (2016) argue that sex is primary. We need sex just to kick start the evolution of a primordial cell.

In this post, I want to sketch Sinai et al.’s (2016) main argument, discuss prior work on the primacy of sex, a similar model by Wilf & Ewens, the puzzle over emergence of higher levels of organization, and the difference between the protocell fusion studied by Sinai et al. (2016) and sex as it is normally understood. My goal is to introduce this fascinating new field that Sinai et al. (2016) are opening to you, dear reader; to provide them with some feedback on their preprint; and, to sketch some preliminary ideas for future extensions of their work.

Read more of this post

Three mechanisms of dark selection for ruxolitinib resistance

Last week I returned from the 6th annual IMO Workshop at the Moffitt Cancer Center in Tampa, Florida. As I’ve sketched in an earlier post, my team worked on understanding ruxolitinib resistance in chronic myelomonocytic leukemia (CMML). We developed a suite of integrated multi-scale models for uncovering how resistance arises in CMML with no apparent strong selective pressures, no changes in tumour burden, and no genetic changes in the clonal architecture of the tumour. On the morning of Friday, November 11th, we were the final group of five to present. Eric Padron shared the clinical background, Andriy Marusyk set up our paradox of resistance, and I sketched six of our mathematical models, the experiments they define, and how we plan to go forward with the $50k pilot grant that was the prize of this competition.

imo2016_participants

You can look through our whole slide deck. But in this post, I will concentrate on the four models that make up the core of our approach. Three models at the level of cells corresponding to different mechanisms of dark selection, and a model at the level of receptors to justify them. The goal is to show that these models lead to qualitatively different dynamics that are sufficiently different that the models could be distinguished between by experiments with realistic levels of noise.
Read more of this post

Don’t take Pokemon Go for dead: a model of product growth

In the last month, some people wrote about the decay in active users for Pokemon Go after its first month, in a tone that presents the game as likely a mere fad – with article on 538, cinemablend and Bloomberg, for example. “Have you deleted Pokémon Go yet?” was even trending on Twitter. Although it is of course certainly possible that this ends up being an accurate description for the game, I posit that such conclusions are rushed. To do so, I examine some systemic reasons that would make the Pokemon Go numbers for August be inevitably lower than those for July, without necessarily implying that the game is doomed to dwindle into irrelevance.

Students in Waterloo playing Pokemon Go. Photo courtesy of Maylin Cui.

Students in Waterloo playing Pokemon Go. Photo courtesy of Maylin Cui.

Others have made similar points before – see this article and the end of this one for example. However, in the spirit of TheEGG, and unlike what most of the press articles can afford to do, we’ll bring some mathematical modeling into our arguments.
Read more of this post

Social algorithms and the Weapons of Math Destruction

Cathy O'Neil holding her new book: Weapons of Math Destruction at a Barnes & Noble in NYC.

Cathy O’Neil holding her new book: Weapons of Math Destruction at a Barnes & Noble in New York city.

In reference to intelligent robots taking over the world, Andrew Ng once said: “I don’t work on preventing AI from turning evil for the same reason that I don’t work on combating overpopulation on the planet Mars.” Sure, it will be an important issue to think about when the time comes. But for now, there is no productive way to think seriously about it. Today there are more concrete problems to worry about and more basic questions that need to be answered. More importantly, there are already problems to deal with. Problems that don’t involve super intelligent tin-men, killer robots, nor sentient machine overlords. Focusing on distant speculation obscures the fact that algorithms — and not necessarily very intelligent ones — already reign over our lives. And for many this reign is far from benevolent.

I owe much of my knowledge about the (negative) effects of algorithms on society to the writings of Cathy O’Neil. I highly recommend her blog mathbabe.org. A couple of months ago, she shared the proofs of her book Weapons of Math Destruction with me, and given that the book came out last week, I wanted to share some of my impressions. In this post, I want to summarize what makes a social algorithm into a weapon of math destruction, and share the example of predictive policing.

Read more of this post