Cataloging a year of social blogging

With almost all of January behind us, I want to share the final summary of 2018. The first summary was on cancer and fitness landscapes; the second was on metamodeling. This third summary continues the philosophical trend of the second, but focuses on analyzing the roles of science, philosophy, and related concepts in society.

There were only 10 posts on the societal aspects of science and philosophy in 2018, with one of them not on this blog. But I think it is the most important topic to examine. And I wish that I had more patience and expertise to do these examinations.

Read more of this post

Advertisements

Cataloging a year of metamodeling blogging

Last Saturday, with just minutes to spare in the first calendar week of 2019, I shared a linkdex the ten (primarily) non-philosophical posts of 2018. It was focused on mathematical oncology and fitness landscapes. Now, as the second week runs into its final hour, it is time to start into the more philosophical content.

Here are 18 posts from 2018 on metamodeling.

With a nice number like 18, I feel obliged to divide them into three categories of six articles each. These three categories: (1) abstraction and reductive vs. effective theorie; (2) metamodeling and philosophy of mathematical biology; and the (3) historical context for metamodeling.

You might expect the third category to be an after-though. But it actually includes some of the most read posts of 2018. So do skim the whole list, dear reader.

Next week, I’ll discuss my remaining ten posts of 2018. The posts focused on the interface of science and society.
Read more of this post

Reductionism: to computer science from philosophy

A biologist and a mathematician walk together into their joint office to find the rubbish bin on top of the desk and on fire. The biologist rushes out, grabs a fire extinguisher, puts out the blaze, returns the bin to the floor and they both start their workday.

The next day, the same pair return to their office to find the rubbish bin in its correct place on the floor but again on fire. This time the mathematician springs to action. She takes the burning bin, puts it on the table, and starts her workday.

The biologist is confused.

Mathematician: “don’t worry, I’ve reduced the problem to a previously solved case.”

What’s the moral of the story? Clearly, it’s that reductionism is “[o]ne of the most used and abused terms in the philosophical lexicon.” At least it is abused enough for this sentiment to make the opening line of Ruse’s (2005) entry in the Oxford Companion to Philosophy.

All of this was not apparent to me.

I underestimated the extent of disagreement about the meaning of reductionism among people who are saying serious things. A disagreement that goes deeper than the opening joke or the distinction between ontological, epistemological, methodological, and theoretical reductionism. Given how much I’ve written about the relationship between reductive and effective theories, it seems important for me to sort out how people read ‘reductive’.

Let me paint the difference that I want to discuss in the broadest stroke with reference to the mind-body problem. Both of the examples I use are purely illustrative and I do not aim to endorse either. There is one sense in which reductionism uses reduce in the same way as ‘reduce, reuse, and recycle’: i.e. reduce = use less, eliminate. It is in this way that behaviourism is a reductive account of the mind, since it (aspires to) eliminate the need to refer to hidden mental, rather than just behavioural, states. There is a second sense in which reductionism uses reducere, or literally from Latin: to bring back. It is in this way that the mind can be reduced to the brain; i.e. discussions of the mind can be brought back to discussions of the brain, and the mind can be taken as fully dependent on the brain. I’ll expand more on this sense throughout the post.

In practice, the two senses above are often conflated and intertwined. For example, instead of saying that the mind is fully dependent on the brain, people will often say that the mind is nothing but the brain, or nothing over and above the brain. When doing this, they’re doing at least two different things. First, they’re claiming to have eliminated something. And second, conflating reduce and reducere. This observation of conflation is similar to my claim that Galileo conflated idealization and abstraction in his book-keeping analogy.

And just like with my distinction between idealization and abstraction, to avoid confusion, the two senses of reductionism should be kept conceptually separate. As before, I’ll make this clear by looking at how theoretical computer science handles reductions. A study in algorithmic philosophy!

In my typical arrogance, I will rename the reduce-concept as eliminativism. And based on its agreement with theoretical computer science, I will keep the reducere-concept as reductionism.
Read more of this post

Blogging, open science and the public intellectual

For the last half-year I’ve been keeping TheEGG to a strict weekly schedule. I’ve been making sure that at least one post comes out during every calendar week. At times this has been taxing. And of course this causes both reflection on why I blog and an urge to dip into old unfinished posts. This week I deliver both. Below is a linkdex of 7 posts from 2016 and earlier (with a few recent comments added here and there) commenting on how scientists and public intellectuals (whatever that phrase might mean) should approach blogging.

If you, dear reader, are a fellow science blogger then you might have seen these articles before. But I hope you might find it useful to revisit and reflect on some of them. I certainly found it insightful. And if you have any important updates to add to these links then these updates are certainly encouraged.

Read more of this post

Models as maps and maps as interfaces

One of my favorite conceptual metaphors from David Basanta is Mathematical Models as Maps. From this perspective, we as scientists are exploring an unknown realm of our particular domain of study. And we want to share with others what we’ve learned, maybe so that they can follow us. So we build a model — we draw a map. At first, we might not know how to identify prominent landmarks, or orient ourselves in our fields. The initial maps are vague sketches that are not useful to anybody but ourselves. Eventually, though, we identify landmarks — key experiments and procedures — and create more useful maps that others can start to use. We publish good, re-usable models.

In this post, I want to discuss the Models as Map metaphors. In particular, I want to trace through how it can take us from a naive realist, to critical realist, to interface theory view of models.

Read more of this post

Bourbaki vs the Russian method as a lens on heuristic models

There are many approaches to teaching higher maths, but two popular ones, that are often held in contrast to each other, are the Bourbaki and Russian methods. The Bourbaki method is named after a fictional mathematician — a nom-de-plume used by a group of mostly French mathematicians in the middle of the 20th century — Nicholas Bourbaki, who is responsible for an extremely abstract and axiomatic treatment of much of modern mathematics in his encyclopedic work Éléments de mathématique. As a pedagogical method, it is very formalist and consists of building up clear and most general possible definitions for the student. Discussions of specific, concrete, and intuitive mathematical objects is avoided, or reserved for homework exercises, Instead, a focus on very general axioms that can apply to many specific structures of interest is favored.

The Russian method, in contrast, stresses specific examples and applications. The instructor gives specific, concrete, and intuitive mathematical objects and structures — say the integers — as a pedagogical examples of the abstract concept at hand — maybe rings, in this case. The student is given other specific instances of these general abstract objects as assignments — maybe some matrices, if we are looking at rings — and through exposure to many specific examples is expected to extract the formal axiomatic structure with which Bourbaki would have started. For the Russian, this overarching formalism becomes largely an afterthought; an exercise left to the reader.

As with many comparisons in education, neither method is strictly “better”. Nor should the names be taken as representative of the people that advocate for or are exposed to each method. For example, I am Russian but I feel like I learnt the majority of my maths following the Bourbaki method and was very satisfied with it. In fact, I am not sure where the ‘Russian’ in the name comes from, although I suspect it is due to V.I. Arnol’d‘s — a famous Russian mathematician from the second half of the 20th century — polemical attack on Bourbaki. Although I do not endorse Arnol’d attack, I do share his fondness for Poincaré and importance of intuition in mathematics. As you can guess from the title, in this article I will be stressing the Russian method as important to the philosophy of science and metamodeling.

I won’t be talking about science education, but about science itself. As I’ve stressed before, I think it a fool’s errand to provide a definition or categorization of the scientific method; it is particularly self-defeating here. But for the following, I will take the perspective that the scientific community, especially the theoretical branches that I work in, is engaged in the act of educating itself about the structure of reality. Reading a paper is like a lesson, I get to learn from what others have discovered. Doing research is like a worksheet: I try my hand at some concrete problems and learn something. Writing a paper is formalizing what I learned into a lesson for others. And, of course, as we try to teach, we end up learning more, so the act of writing often transforms what we learned in our ‘worksheet’.
Read more of this post

The Noble Eightfold Path to Mathematical Biology

Twitter is not a place for nuance. It is a place for short, pithy statements. But if you follow the right people, those short statements can be very insightful. In these rare case, a tweet can be like a kōan: a starting place for thought and meditation. Today I want to reflect on such a thoughtful tweet from Rob Noble outlining his template for doing good work in mathematical biology. This reflection is inspired by the discussions we have on my recent post on mathtimidation by analytic solution vs curse of computing by simulation.

So, with slight modification and expansion from Rob’s original — and in keeping with the opening theme — let me present The Noble Eightfold Path to Mathematical Bilogy:

  1. Right Intention: Identify a problem or mysterious effect in biology;
  2. Right View: Study the existing mathematical and mental models for this or similar problems;
  3. Right Effort: Create model based on the biology;
  4. Right Conduct: Check that the output of the model matches data;
  5. Right Speech: Humbly write up;
  6. Right Mindfulness: Analyse why model works;
  7. Right Livelihood: Based on 6, create simplest, most general useful model;
  8. Right Samadhi: Rewrite focussing on 6 & 7.

The hardest, most valuable work begins at step 6.

The only problem is that people often stop at step 5, and sometimes skip step 2 and even step 3.

This suggests that the model is more prescriptive than descriptive. And aspiration for good scholarship in mathematical biology.

In the rest of the post, I want to reflect on if it is the right aspiration. And also add some detail to the steps.

Read more of this post

Mathtimidation by analytic solution vs curse of computing by simulation

Recently, I was chatting with Patrick Ellsworth about the merits of simulation vs analytic solutions in evolutionary game theory. As you might expect from my old posts on the curse of computing, and my enjoyment of classifying games into dynamic regimes, I started with my typical argument against simulations. However, as I searched for a positive argument for analytic solutions of games, I realized that I didn’t have a good one. Instead, I arrived at another negative argument — this time against analytic solutions of heuristic models.

Hopefully this curmudgeoning comes as no surprise by now.

But it did leave me in a rather confused state.

Given that TheEGG is meant as a place to share such confusions, I want to use this post to set the stage for the simulation vs analytic debate in EGT and then rehearse my arguments. I hope that, dear reader, you will then help resolve the confusion.

First, for context, I’ll share my own journey from simulations to analytic approaches. You can see a visual sketch of it above. Second, I’ll present an argument against simulations — at least as I framed that argument around the time I arrived at Moffitt. Third, I’ll present the new argument against analytic approaches. At the end — as is often the case — there will be no resolution.

Read more of this post

Methods and morals for mathematical modeling

About a year ago, Vincent Cannataro emailed me asking about any resources that I might have on the philosophy and etiquette of mathematical modeling and inference. As regular readers of TheEGG know, this topic fascinates me. But as I was writing a reply to Vincent, I realized that I don’t have a single post that could serve as an entry point to my musings on the topic. Instead, I ended up sending him an annotated list of eleven links and a couple of book recommendations. As I scrambled for a post for this week, I realized that such an analytic linkdex should exist on TheEGG. So, in case others have interests similar to Vincent and me, I thought that it might be good to put together in one place some of the resources about metamodeling and related philosophy available on this blog.

This is not an exhaustive list, but it might still be relatively exhausting to read.

I’ve expanded slightly past the original 11 links (to 14) to highlight some more recent posts. The free association of the posts is structured slightly, with three sections: (1) classifying mathematical models, (2) pros and cons of computational models, and (3) ethics of models.

Read more of this post

Overcoming folk-physics: the case of projectile motion for Aristotle, John Philoponus, Ibn-Sina & Galileo

A few years ago, I wrote about the importance of pairing tools and problems in science. Not selecting the best tool for the job, but adjusting both your problem and your method to form the best pair. There, I made the distinction between endogenous and exogenous questions. A question is endogenous to a field if it is motivated by the existing tools developed for the field or slight extensions of them. A question is exogenous if motivated by frameworks or concerns external to the field. Usually, such an external motivating framework is accepted uncritically with the most common culprits being the unarticulated ‘intuitive’ and ‘natural’ folk theories forced on us by our everyday experiences.

Sometimes a great amount of scientific or technological progress can be had from overcoming our reliance on a folk-theory. A classic examples of this would be the development of inertia and momentum in physics. In this post, I want to sketch a geneology of this transition to make the notion of endogenous vs exogenous questions a bit more precise.

How was the folk-physics of projectile motion abandoned?

In the process, I’ll get to touch briefly on two more recent threads on TheEGG: The elimination of the ontological division between artificial and natural motion (that was essential groundwork for Darwin’s later elimination of the division between artificial and natural processes) and the extraction and formalization of the tacit knowledge underlying a craft.
Read more of this post