Recent Posts
- Principles of biological computation: from circadian clock to evolution
- The science and engineering of biological computation: from process to software to DNA-based neural networks
- Elements of biological computation & stochastic thermodynamics of life
- Rationality, the Bayesian mind and their limits
- Web of C-lief: conjectures vs. model assumptions vs. scientific beliefs
- Idealization vs abstraction for mathematical models of evolution
- Allegory of the replication crisis in algorithmic trading
S | M | T | W | T | F | S |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 671,072 views
Join 2,752 other subscribers
Contributing authors
-
Abel Molina
-
Alexandru Strimbu
-
Alexander Yartsev
-
Eric Bolo
-
David Robert Grimes
-
Forrest Barnum
-
Jill Gallaher
-
Julian Xue
-
Artem Kaznatcheev
-
Keven Poulin
-
Marcel Montrey
-
Matthew Wicker
-
Dan Nichol
-
Philip Gerlee
-
Piotr Migdał
-
Robert Vander Velde
-
Rob Noble
-
Sergio Graziosi
-
Max Hartshorn
-
Thomas Shultz
-
Vincent Cannataro
-
Yunjun Yang
Cancer, bad luck, and a pair of paradoxes
April 4, 2015 22 Comments
Among the highlights of my recent visit to IMO were several stimulating discussions with Artem Kaznatcheev. I’m still thinking over my response to his recent post about reductionist versus operationalist approaches in math biology, which is very relevant to some of my current research. Meanwhile, at Artem’s suggestion, this post will discuss a reanalysis of the “cancer and bad luck” paper that spurred so many headlines at the start of this year. Whereas many others have written critiques of that paper’s statistical methods and interpretations, my colleagues and I instead tried fitting alternative models to the underlying data. We thus found ourselves revisiting a couple of celebrated scientific paradoxes.
To start this post, I will introduce you to Simpson’s paradox and Peto’s paradox. With these pair of paradoxes in mind, we’ll turn a critical eye to Tomasetti & Vogelstein (2015), and I will explain our reanalysis of their data set.
Read more of this post
Filed under Commentary, Models Tagged with mathematical oncology