Danger of motivatiogenesis in interdisciplinary work

Randall Munroe has a nice old xkcd on citogenesis: the way factoids get created from bad checking of sources. You can see the comic at right. But let me summarize the process without direct reference to Wikipedia:

1. Somebody makes up a factoid and writes it somewhere without citation.
2. Another person then uses the factoid in passing in a more authoritative work, maybe sighting the point in 1 or not.
3. Further work inherits the citation from 2, without verifying its source, further enhancing the legitimacy of the factoid.
4. The cycle repeats.

Soon, everybody knows this factoid and yet there is no ground truth to back it up. I’m sure we can all think of some popular examples. Social media certainly seems to make this sort of loop easier.

We see this occasionally in science, too. Back in 2012, Daniel Lemire provided a nice example of this with algorithms research. But usually with science factoids, it eventually gets debuked with new experiments or proofs. Mostly because it can be professionally rewarding to show that a commonly assumed factoid is actually false.

But there is a similar effect in science that seems to me even more common, and much harder to correct: motivatiogenesis.

Motivatiogenesis can be especially easy to fall into with interdisiplinary work. Especially if we don’t challenge ourselves to produce work that is an advance in both (and not just one) of the fields we’re bridging.

Read more of this post


Quick introduction: Evolutionary game assay in Python

It’s been a while since I’ve shared or discussed code on TheEGG. So to avoid always being too vague and theoretical, I want to use this post to explain how one would write some Python code to measure evolutionary games. This will be an annotated sketch of the game assay from our recent work on measuring evolutionary games in non-small cell lung cancer (Kaznatcheev et al., 2019).

The motivation for this post came about a month ago when Nathan Farrokhian was asking for some advice on how to repeat our game assay with a new experimental system. He has since done so (I think) by measuring the game between Gefitinib-sensitive and Gefitinib-resistant cell types. And I thought it would make a nice post in the quick introductions series.

Of course, the details of the system don’t matter. As long as you have an array of growth rates (call them yR and yG with corresponding errors yR_e and yG_e) and initial proportions of cell types (call them xR and xG) then you could repeat the assay. To see how to get to this array from more primitive measurements, see my old post on population dynamics from time-lapse microscopy. It also has Python code for your enjoyment.

In this post, I’ll go through the two final steps of the game assay. First, I’ll show how to fit and visualize fitness functions (Figure 3 in Kaznatcheev et al., 2019). Second, I’ll transform those fitness functions into game points and plot (Figure 4b in Kaznatcheev et al., 2019). I’ll save discussions of the non-linear game assay (see Appendix F in Kaznatcheev et al., 2019) for a future post.
Read more of this post

Cataloging a year of social blogging

With almost all of January behind us, I want to share the final summary of 2018. The first summary was on cancer and fitness landscapes; the second was on metamodeling. This third summary continues the philosophical trend of the second, but focuses on analyzing the roles of science, philosophy, and related concepts in society.

There were only 10 posts on the societal aspects of science and philosophy in 2018, with one of them not on this blog. But I think it is the most important topic to examine. And I wish that I had more patience and expertise to do these examinations.

Read more of this post

Cataloging a year of metamodeling blogging

Last Saturday, with just minutes to spare in the first calendar week of 2019, I shared a linkdex the ten (primarily) non-philosophical posts of 2018. It was focused on mathematical oncology and fitness landscapes. Now, as the second week runs into its final hour, it is time to start into the more philosophical content.

Here are 18 posts from 2018 on metamodeling.

With a nice number like 18, I feel obliged to divide them into three categories of six articles each. These three categories: (1) abstraction and reductive vs. effective theorie; (2) metamodeling and philosophy of mathematical biology; and the (3) historical context for metamodeling.

You might expect the third category to be an after-though. But it actually includes some of the most read posts of 2018. So do skim the whole list, dear reader.

Next week, I’ll discuss my remaining ten posts of 2018. The posts focused on the interface of science and society.
Read more of this post

Cataloging a year of blogging: cancer and fitness landscapes

Happy 2019!

As we leave 2018, the Theory, Evolution, and Games Group Blog enters its 9th calendar year. This past year started out slowly with only 4 posts in the first 5 months. However, after May 31st, I managed to maintain a regular posting schedule. This is the 32nd calendar week in a row with at least one new blog post released.

I am very happy about this regularity. Let’s see if I can maintain it throughout 2019.

A total of 38 posts appeared on TheEGG last year. This is the 3rd most prolific year after the 47 in 2014 and 88 in 2013. One of those being a review of the 12 posts of 2017 (the least prolific year for TheEGG).

But the other 37 posts are too much to cover in one review. Thus, in this catalogue, I’ll focus on cancer and fitness landscapes. Next week, I’ll deal with the more philosophical content from the last year.
Read more of this post

Methods and morals for mathematical modeling

About a year ago, Vincent Cannataro emailed me asking about any resources that I might have on the philosophy and etiquette of mathematical modeling and inference. As regular readers of TheEGG know, this topic fascinates me. But as I was writing a reply to Vincent, I realized that I don’t have a single post that could serve as an entry point to my musings on the topic. Instead, I ended up sending him an annotated list of eleven links and a couple of book recommendations. As I scrambled for a post for this week, I realized that such an analytic linkdex should exist on TheEGG. So, in case others have interests similar to Vincent and me, I thought that it might be good to put together in one place some of the resources about metamodeling and related philosophy available on this blog.

This is not an exhaustive list, but it might still be relatively exhausting to read.

I’ve expanded slightly past the original 11 links (to 14) to highlight some more recent posts. The free association of the posts is structured slightly, with three sections: (1) classifying mathematical models, (2) pros and cons of computational models, and (3) ethics of models.

Read more of this post

Heuristic models as inspiration-for and falsifiers-of abstractions

Last month, I blogged about abstraction and lamented that abstract models are lacking in biology. Here, I want to return to this.

What isn’t lacking in biology — and what I also work on — is simulation and heuristic models. These can seem abstract in the colloquial sense but are not very abstract for a computer scientist. They are usually more idealizations than abstractions. And even if all I care about is abstract models — which I can reasonably be accused of at times — then heuristic models should still be important to me. Heuristics help abstractions in two ways: portfolios of heuristic models can inspire abstractions, and single heuristic models can falsify abstractions.

In this post, I want to briefly discuss these two uses for heuristic models. In the process, I will try to make it a bit more clear as to what I mean by a heuristic model. I will do this with metaphors. So I’ll produce a heuristic model of heuristic models. And I’ll use spatial structure and the evolution of cooperation as a case study.

Read more of this post

As a scientist, don’t speak to the public. Listen to the public.

There is a lot of advice written out there for aspiring science writers and bloggers. And as someone who writes science and about science, I read through this at times. The most common trend I see in this advice is to make your writing personal and to tell a story, with all the drama and plot-twists of a good page-turner. This is solid advise for good writing, one that we shouldn’t restrict to writing about science but also for writing the articles that are science. That would make reading and writing as a scientist (two of our biggest activities) much less boring. Yet we don’t do this. More importantly, we put up with reading hundreds of poorly written, boring papers.

So if scientists put up with awful writing, why do we have to write better for the public? I think that the answer to this reveals something very important the role of science in society; who science serves and who it doesn’t. This affects how we should be thinking about activities like ‘science outreach’.

In this post, I want to put together some thoughts that have been going through my mind on funding, science and society. These are mostly half-baked and I am eager to be corrected. More importantly, I am hoping that this encourages you, dear reader, to share any thoughts that this discussion sparks.

Read more of this post

Personal case study on the usefulness of philosophy to biology

At the start of this month, one of my favourite blogs — Dynamic Ecology — pointed me to a great interview with Michela Massimi. She has recently won the Royal Society’s Wilkins-Bernal-Medawar Medal for the philosophy of science, and to celebrate Philip Ball interviewed her for Quanta. I recommend reading the whole interview, but for this post, I will focus on just one aspect.

Ball asked Massimi how she defends philosophy of science against dismissive comments by scientists like Feynman or Hawking. In response, she made the very important point that for the philosophy of science to be useful, it doesn’t need to be useful to science:

Dismissive claims by famous physicists that philosophy is either a useless intellectual exercise, or not on a par with physics because of being incapable of progress, seem to start from the false assumption that philosophy has to be of use for scientists or is of no use at all.

But all that matters is that it be of some use. We would not assess the intellectual value of Roman history in terms of how useful it might be to the Romans themselves. The same for archaeology and anthropology. Why should philosophy of science be any different?

Instead, philosophy is useful for humankind more generally. This is certainly true.

But even for a scientist who is only worrying about getting that next grant, or publishing that next flashy paper. For a scientist who is completely detached from the interests of humanity. Even for this scientist, I don’t think we have to concede the point on the usefulness of philosophy of science. Because philosophy, and philosophy of science in particular, doesn’t need to be useful to science. But it often is.

Here I want to give a personal example that I first shared in the comments on Dynamic Ecology.
Read more of this post

Abstract is not the opposite of empirical: case of the game assay

Last week, Jacob Scott was at a meeting to celebrate the establishment of the Center for Evolutionary Therapy at Moffitt, and he presented our work on measuring the effective games that non-small cell lung cancer plays (see this preprint for the latest draft). From the audience, David Basanta summarized it in a tweet as “trying to make our game theory models less abstract”. But I actually saw our work as doing the opposite (and so quickly disagreed).

However, I could understand the way David was using ‘abstract’. I think I’ve often used it in this colloquial sense as well. And in that sense it is often the opposite of empirical, which is seen as colloquially ‘concrete’. Given my arrogance, I — of course — assume that my current conception of ‘abstract’ is the correct one, and the colloquial sense is wrong. To test myself: in this post, I will attempt to define both what ‘abstract’ means and how it is used colloquially. As a case study, I will use the game assay that David and I disagreed about.

This is a particularly useful exercise for me because it lets me make better sense of how two very different-seeming aspects of my work — the theoretical versus the empirical — are both abstractions. It also lets me think about when simple models are abstract and when they’re ‘just’ toys.

Read more of this post