## Closing the gap between quantum and deterministic query complexity for easy to certify total functions

Recently, trying to keep with my weekly post schedule, I’ve been a bit strapped for inspiration. As such, I’ve posted a few times on a major topic from my past life: quantum query complexity. I’ve mostly tried to describe some techniques for (lower) bounding query complexity like the negative adversary method and span programs. But I’ve never really showed how to use these methods to actually set up interesting bounds.

Since I am again short of a post, I thought I’d share this week a simple proof of a bound possible with these techniques. This is based on an old note I wrote on 19 April 2011.

One of the big conjectures in quantum query complexity — at least a half decade ago when I was worrying about this topic — is that quantum queries give you at most a quadratic speedup over deterministic queries for total functions. In symbols: $D(f) = O(Q^2(f))$. Since Grover’s algorithm can give us a quadratic quantum speed-up for arbitrary total functions, this conjecture basically says: you can’t do better than Grover.

In this post, I’ll prove a baby version of this conjecture.

Let’s call a Boolean total-function easy to certify if one side of the function has a constant-length certificate complexity. I’ll prove that for easy-to-certify total functions, $D(f) = O(Q^2(f))$.

This is not an important result, but I thought it is a cute illustration of standard techniques. And so it doesn’t get lost in my old pdf, I thought I’d finally convert it to a blog post. Think of this as a simple application of the adversary method.

## Constant-sum games as a way from non-cell autonomous processes to constant tumour growth rate

A lot of thinking in cancer biology seems to be focused on cell-autonomous processes. This is the (overly) reductive view that key properties of cells, such as fitness, are intrinsic to the cells themselves and not a function of their interaction with other cells in the tumour. As far as starting points go, this is reasonable. But in many cases, we can start to go beyond this cell-autonomous starting point and consider non-cell-autonomous processes. This is when the key properties of a cell are not a function of just that cell but also its interaction partners. As an evolutionary game theorist, I am clearly partial to this view.

Recently, I was reading yet another preprint that has observed non-cell autonomous fitness in tumours. In this case, Johnson et al. (2019) spotted the Allee effect in the growth kinetics of cancer cells even at extremely low densities (seeding in vitro at <200 cells in a 1 mm^3 well). This is an interesting paper, and although not explicitly game-theoretic in its approach, I think it is worth reading for evolutionary game theorists.

Johnson et al.'s (2019) approach is not explicitly game-theoretic because they consider their in vitro populations as a monomorphic clonal line, and thus don't model interactions between types. Instead, they attribute non-cell autonomous processes to density dependence of the single type on itself. In this setting, they reasonably define the cell-autonomous null-model as constant exponential growth, i.e. $\dot{N}_T = w_TN_T$ for some constant fitness $w_T$ and total tumour size $N_T$.

It might also be tempting to use the same model to capture cell-autonomous growth in game-theoretic models. But this would be mistaken. For this is only effectively cell-autonomous at the level of the whole tumour, but could hide non-cell-autonomous fitness at the level of the different types that make up the tumour. This apparent cell-autonomous total growth will happen whenever the type interactions are described by constant-sum games.

Given the importance of constant-sum games (more famously known as zero-sum games) to the classical game theory literature, I thought that I would write a quick introductory post about this correspondence between non-cell autonomous constant-sum games and effectively cell-autonomous growth at the level of the whole tumour.

## Effective games from spatial structure

For the last week, I’ve been at the Institute Mittag-Leffler of the Royal Swedish Academy of Sciences for their program on mathematical biology. The institute is a series of apartments and a grand mathematical library located in the suburbs of Stockholm. And the program is a mostly unstructured atmosphere — with only about 4 hours of seminars over the whole week — aimed to bring like-minded researchers together. It has been a great opportunity to reconnect with old colleagues and meet some new ones.

During my time here, I’ve been thinking a lot about effective games and the effects of spatial structure. Discussions with Philip Gerlee were particularly helpful to reinvigorate my interest in this. As part of my reflection, I revisited the Ohtsuki-Nowak (2006) transform and wanted to use this post to share a cute observation about how space can create an effective game where there is no reductive game.

Suppose you were using our recent game assay to measure an effective game, and you got the above left graph for the fitness functions of your two types. On the x-axis, you have seeding proportion of type C and on the y-axis you have fitness. In cyan you have the measured fitness function for type C and in magenta, you have the fitness function for type D. The particular fitnesses scale of the y-axis is not super important, not even the x-intercept — I’ve chosen them purely for convenience. The only important aspect is that the cyan and magenta lines are parallel, with a positive slope, and the magenta above the cyan.

This is not a crazy result to get, compare it to the fitness functions for the Alectinib + CAF condition measured in Kaznatcheev et al. (2018) which is shown at right. There, cyan is parental and magenta is resistant. The two lines of best fit aren’t parallel, but they aren’t that far off.

How would you interpret this sort of graph? Is there a game-like interaction happening there?

Of course, this is a trick question that I give away by the title and set-up. The answer will depend on if you’re asking about effective or reductive games, and what you know about the population structure. And this is the cute observation that I want to highlight.

## Replicator dynamics and the simplex as a vector space

Over the years of TheEGG, I’ve chronicled a number of nice properties of the replicator equation and its wide range of applications. From a theoretical perspective, I showed how the differential version can serve as the generator for the action that is the finite difference version of replicator dynamics. And how measurements of replicator dynamics can correspond to log-odds. From an application perspective, I talked about how replicator dynamics can be realized in many different ways. This includes a correspondance to idealized replating experiments and a representation of populations growing toward carrying capacity via fictitious free-space strategies. These fictitious strategies are made apparent by using a trick to factor and nest the replicator dynamics. The same trick can also help us to use the symmetries of the fitness functions for dimensionality reduction and to prove closed orbits in the dynamics. And, of course, I discussed countless heuristic models and some abductions that use replicator dynamics.

But whenever some object becomes so familiar and easy to handle, I get worried that I am missing out on some more foundational and simple structure underlying it. In the case of replicator dynamics, Tom Leinster’s post last year on the n-Category Cafe pointed me to the simple structure that I was missing: the vector space structure of the simplex. This allows us to use linear algebra — the friendliest tool in the mathematician’s toolbox — in a new way to better understand evolutionary dynamics.

A 2-simplex with some of its 1-dimensional linear subspaces drawn by Greg Egan.

Given my interest in operationalization of replicator dynamics, I will use some of the terminology and order of presentation from Aitchison’s (1986) statistical analysis of compositional data. We will see that a number of operations that we define will have clear experimental and evolutionary interpretations.

I can’t draw any real conclusions from this, but I found it worth jotting down for later reference. If you can think of a way to make these observations useful then please let me know.

## Spatializing the Go-vs-Grow game with the Ohtsuki-Nowak transform

Recently, I’ve been thinking a lot about small projects to get students started with evolutionary game theory. One idea that came to mind is to look at games that have been analyzed in the inviscid regime then ‘spatialize’ them and reanalyze them. This is usually not difficult to do and provides some motivation to solving for and making sense of the dynamic regimes of a game. And it is not always pointless, for example, our edge effects paper (Kaznatcheev et al, 2015) is mostly just a spatialization of Basanta et al.’s (2008a) Go-vs-Grow game together with some discussion.

Technically, TheEGG together with that paper have everything that one would need to learn this spatializing technique. However, I realized that my earlier posts on spatializing with the Ohtsuki-Nowak transform might a bit too abstract and the paper a bit too terse for a student who just started with EGT. As such, in this post, I want to go more slowly through a concrete example of spatializing an evolutionary game. Hopefully, it will be useful to students. If you are a beginner to EGT that is reading this post, and something doesn’t make sense then please ask for clarification in the comments.

I’ll use the Go-vs-Grow game as the example. I will focus on the mathematics, and if you want to read about the biological or oncological significance then I encourage you to read Kaznatcheev et al. (2015) in full.

## Drug holidays and losing resistance with replicator dynamics

A couple of weeks ago, before we all left Tampa, Pranav Warman, David Basanta and I frantically worked on refinements of our model of prostate cancer in the bone. One of the things that David and Pranav hoped to see from the model was conditions under which adaptive therapy (or just treatment interrupted with non-treatment holidays) performs better than solid blocks of treatment. As we struggled to find parameters that might achieve this result, my frustration drove me to embrace the advice of George PĆ³lya: “If you can’t solve a problem, then there is an easier problem you can solve: find it.”

In this case, I opted to remove all mentions of the bone and cancer. Instead, I asked a simpler but more abstract question: what qualitative features must a minimal model of the evolution of resistance have in order for drug holidays to be superior to a single treatment block? In this post, I want to set up this question precisely, show why drug holidays are difficult in evolutionary models, and propose a feature that makes drug holidays viable. If you find this topic exciting then you should consider registering for the 6th annual Integrated Mathematical Oncology workshop at the Moffitt Cancer Center.[1] This year’s theme is drug resistance.

## Multiplicative versus additive fitness and the limit of weak selection

Previously, I have discussed the importance of understanding how fitness is defined in a given model. So far, I’ve focused on how mathematically equivalent formulations can have different ontological commitments. In this post, I want to touch briefly on another concern: two different types of mathematical definitions of fitness. In particular, I will discuss additive fitness versus multiplicative fitness.[1] You often see the former in continuous time replicator dynamics and the latter in discrete time models.

In some ways, these versions are equivalent: there is a natural bijection between them through the exponential map or by taking the limit of infinitesimally small time-steps. A special case of more general Lie theory. But in practice, they are used differently in models. Implicitly changing which definition one uses throughout a model — without running back and forth through the isomorphism — can lead to silly mistakes. Thankfully, there is usually a quick fix for this in the limit of weak selection.

I suspect that this post is common knowledge. However, I didn’t have a quick reference to give to Pranav Warman, so I am writing this.

## Evolutionary dynamics of acid and VEGF production in tumours

Today was my presentation day at ECMTB/SMB 2016. I spoke in David Basantaās mini-symposium on the games that cancer cells play and postered during the poster session. The mini-symposium started with a brief intro from David, and had 25 minute talks from Jacob Scott, myself, Alexander Anderson, and John Nagy. David, Jake, Sandy, and John are some of the top mathematical oncologists and really drew a crowd, so I felt privileged at the opportunity to address that crowd. It was also just fun to see lots of familiar faces in the same place.

A crowded room by the end of Sandy’s presentation.

My talk was focused on two projects. The first part was the advertised āEvolutionary dynamics of acid and VEGF production in tumoursā that Iāve been working on with Robert Vander Velde, Jake, and David. The second part ā and my poster later in the day ā was the additional ā(+ measuring games in non-small cell lung cancer)ā based on work with Jeffrey Peacock, Andriy Marusyk, and Jake. You can download my slides here (also the poster), but they are probably hard to make sense of without a presentation. I had intended to have a preprint out on this prior to today, but it will follow next week instead. Since there are already many blog posts about the double goods project on TheEGG, in this post I will organize them into a single annotated linkdex.

## Hamiltonian systems and closed orbits in replicator dynamics of cancer

Last month, I classified the possible dynamic regimes of our model of acidity and vasculature as linear goods in cancer. In one of those dynamic regimes, there is an internal fixed point and I claimed closed orbits around that point. However, I did not justify or illustrate this claim. In this post, I will sketch how to prove that those orbits are indeed closed, and show some examples. In the process, we’ll see how to transform our replicator dynamics into a Hamiltonian system and use standard tricks from classical mechanics to our advantage. As before, my tricks will draw heavily from Hauert et al. (2002) analysis of the optional public good game. Studying this classic paper closely is useful for us because of an analogy that Robert Vander Velde found between the linear version of our double goods model for the Warburg effect and the optional public good game.

The post will mostly be about the mathematics. However, at the end, I will consider an example of how these sort of cyclic dynamics can matter for treatment. In particular, I will consider what happens if we target aerobic glycolysis with a drug like lonidamine but stop the treatment too early.

## Multiple realizability of replicator dynamics

Abstraction is my favorite part of mathematics. I find a certain beauty in seeing structures without their implementations, or structures that are preserved across various implementations. And although it seems possible to reason through analogy without (explicit) abstraction, I would not enjoy being restricted in such a way. In biology and medicine, however, I often find that one can get caught up in the concrete and particular. This makes it harder to remember that certain macro-dynamical properties can be abstracted and made independent of particular micro-dynamical implementations. In this post, I want to focus on a particular pet-peeve of mine: accounts of the replicator equation.

I will start with a brief philosophical detour through multiple realizability, and discuss the popular analogy of temperature. Then I will move on to the phenomenological definition of the replicator equation, and a few realizations. A particular target will be the statement I’ve been hearing too often recently: replicator dynamics are only true for a very large but fixed-size well-mixed population.