## Drug holidays and losing resistance with replicator dynamics

September 2, 2016 5 Comments

A couple of weeks ago, before we all left Tampa, Pranav Warman, David Basanta and I frantically worked on refinements of our model of prostate cancer in the bone. One of the things that David and Pranav hoped to see from the model was conditions under which adaptive therapy (or just treatment interrupted with non-treatment holidays) performs better than solid blocks of treatment. As we struggled to find parameters that might achieve this result, my frustration drove me to embrace the advice of George Pólya: “If you can’t solve a problem, then there is an easier problem you can solve: find it.”

In this case, I opted to remove all mentions of the bone and cancer. Instead, I asked a simpler but more abstract question: what qualitative features must a minimal model of the evolution of resistance have in order for drug holidays to be superior to a single treatment block? In this post, I want to set up this question precisely, show why drug holidays are difficult in evolutionary models, and propose a feature that makes drug holidays viable. If you find this topic exciting then you should consider registering for the 6th annual Integrated Mathematical Oncology workshop at the Moffitt Cancer Center.^{[1]} This year’s theme is drug resistance.

Read more of this post

## Multiplicative versus additive fitness and the limit of weak selection

August 17, 2016 by Artem Kaznatcheev Leave a comment

Previously, I have discussed the importance of understanding how fitness is defined in a given model. So far, I’ve focused on how mathematically equivalent formulations can have different ontological commitments. In this post, I want to touch briefly on another concern: two different types of mathematical definitions of fitness. In particular, I will discuss additive fitness versus multiplicative fitness.

^{[1]}You often see the former in continuous time replicator dynamics and the latter in discrete time models.In some ways, these versions are equivalent: there is a natural bijection between them through the exponential map or by taking the limit of infinitesimally small time-steps. A special case of more general Lie theory. But in practice, they are used differently in models. Implicitly changing which definition one uses throughout a model — without running back and forth through the isomorphism — can lead to silly mistakes. Thankfully, there is usually a quick fix for this in the limit of weak selection.

I suspect that this post is common knowledge. However, I didn’t have a quick reference to give to Pranav Warman, so I am writing this.

Read more of this post

Filed under Analytic, Commentary, Models Tagged with evolution, fitness ontology, metamodeling, replicator dynamics