Evolutionary non-commutativity suggests novel treatment strategies
February 14, 2015 10 Comments
In the Autumn of 2011 I received an email from Jacob Scott, now a good friend and better mentor, who was looking for an undergraduate to code an evolutionary simulation. Jake had just arrived in Oxford to start his DPhil in applied mathematics and by chance had dined at St Anne’s College with Peter Jeavons, then a tutor of mine, the evening before. Jake had outlined his ideas, Peter had supplied a number of email addresses, Jake sent an email and I uncharacteristically replied saying I’d give it a shot. These unlikely events would led me to where I am today — a DPhil candidate in the Oxford University Department of Computer Science. My project with Jake was a success and I was invited to speak at the 2012 meeting of the Society of Mathematical Biology in Knoxville, TN. Here I met one of Jake’s supervisors, Alexander Anderson, who invited me to visit the Department of Integrated Mathematical Oncology at the Moffitt Cancer Center and Research Institute for a workshop in December of that year. Here Dr. Anderson and I discussed one of the key issues with the work I will present in this post, issues that now form the basis of my DPhil with Dr. Anderson as one of two supervisors. Fittingly, the other is Peter Jeavons.
Jake was considering the problem of treating and avoiding drug resistance and in his short email provided his hypothesis as a single question: “Can we administer a sequence of drugs to steer the evolution of a disease population to a configuration from which resistance cannot emerge?”
In Nichol et al. (2015), we provide evidence for an affirmative answer to this question. I would like to use this post to introduce you to our result, and discuss some of the criticisms.
Five motivations for theoretical computer science
February 28, 2015 by Abel Molina 9 Comments
There are some situations, perhaps lucky ones, where it is felt that an activity needs no external motivation or justification. For the rest, it can be helpful to think of what the task at hand can be useful for. This of course doesn’t answer the larger question of what is worth doing, since it just distributes the burden somewhere else, but establishing these connections seems like a natural part of an answer to the larger question.
Along those lines, the following are five intellectual areas for whose study theoretical computer science concepts and their development can be useful – therefore, a curiosity about these areas can provide some motivation for learning about those cstheory concepts or developing them. They are arranged from the likely more obvious to most people to the less so: technology, mathematics, science, society, and philosophy. This post could also serve as an homage to delayed gratification (perhaps with some procrastination mixed in), having been finally written up more than three years after first discussing it with Artem.
Read more of this post
Filed under Commentary Tagged with application of theory, cstheory, philosophy of math, philosophy of science