Evolutionary non-commutativity suggests novel treatment strategies

In the Autumn of 2011 I received an email from Jacob Scott, now a good friend and better mentor, who was looking for an undergraduate to code an evolutionary simulation. Jake had just arrived in Oxford to start his DPhil in applied mathematics and by chance had dined at St Anne’s College with Peter Jeavons, then a tutor of mine, the evening before. Jake had outlined his ideas, Peter had supplied a number of email addresses, Jake sent an email and I uncharacteristically replied saying I’d give it a shot. These unlikely events would led me to where I am today — a DPhil candidate in the Oxford University Department of Computer Science. My project with Jake was a success and I was invited to speak at the 2012 meeting of the Society of Mathematical Biology in Knoxville, TN. Here I met one of Jake’s supervisors, Alexander Anderson, who invited me to visit the Department of Integrated Mathematical Oncology at the Moffitt Cancer Center and Research Institute for a workshop in December of that year. Here Dr. Anderson and I discussed one of the key issues with the work I will present in this post, issues that now form the basis of my DPhil with Dr. Anderson as one of two supervisors. Fittingly, the other is Peter Jeavons.

Jake was considering the problem of treating and avoiding drug resistance and in his short email provided his hypothesis as a single question: “Can we administer a sequence of drugs to steer the evolution of a disease population to a configuration from which resistance cannot emerge?”

In Nichol et al. (2015), we provide evidence for an affirmative answer to this question. I would like to use this post to introduce you to our result, and discuss some of the criticisms.

Read more of this post

Advertisements