September 30, 2013
by Artem Kaznatcheev
Before her mother convinced her to be a doctor, my mother was a ballerina. As a result, whenever I tried to blame some external factor for my failures, I was met with my mother’s favorite aphorism: a bad dancer’s shoes are always too tight.
“Ahh, another idiosyncratic story about the human side of research,” you note, “why so many?”
Partially these stories are to broaden TheEGG blog’s appeal, and to lull you into a false sense of security before overrunning you with mathematics. Partially it is a homage to the blogs that inspired me to write, such as Lipton and Regan’s “Godel’s Lost Letters and P = NP”. Mostly, however, it is to show that science — like everything else — is a human endeavour with human roots and subject to all the excitement, disappointments, insights, and biases that this entails. Although science is a human narrative, unlike the similar story of pseudoscience, she tries to overcome or recognize her biases when they hinder her development.

The self-serving bias has been particularily thorny in decision sciences. Humans, especially individuals with low self-esteem, tend to attribute their success to personal skill, while blaming their failures on external factors. As you can guess from my mother’s words, I struggle with this all the time. When I try to explain the importance of worst-case analysis, algorithmic thinking, or rigorous modeling to biologist and fail, my first instinct is to blame it on the structural differences between the biological and mathematical community, or biologists’ discomfort with mathematics. In reality, the blame is with my inability to articulate the merits of my stance, or provide strong evidence that I can offer any practical biological results. Even more depressing, I might be suffering from a case of interdisciplinitis and promoting a meritless idea while completely failing to connect to the central questions in biology. However, I must maintain my self-esteem, and even from my language here, you can tell that I am unwilling to fully entertain the latter possibility. Interestingly, this sort of bias can propagate from individual researchers into their theories.
One of the difficulties for biologists, economists, and other decision scientists has been coming to grips with observed irrationality in humans and other animals. Why wouldn’t there be a constant pressure toward more rational animals that maximize their fitness? Who is to blame for this irrational behavior? In line with the self-serving bias, it must be that crack in the sidewalk! Or maybe some other feature of the environment.
Read more of this post
Fitness distributions versus fitness as a summary statistic: algorithmic Darwinism and supply-driven evolution
March 2, 2019 by Artem Kaznatcheev 4 Comments
For simplicity, especially in the fitness landscape literature, fitness is often treated as a scalar — usually a real number. If our fitness landscape is on genotypes then each genotype has an associated scalar value of fitness. If our fitness landscape is on phenotypes then each phenotype has an associated scalar value of fitness.
But this is a little strange. After all, two organisms with the same genotype or phenotype don’t necessarily have the same number of offspring or other life outcomes. As such, we’re usually meant to interpret the value of fitness as the mean of some random variable like number of children. But is the mean the right summary statistic to use? And if it is then which mean: arithmetic or geometric or some other?
One way around this is to simply not use a summary statistic, and instead treat fitness as a random variable with a corresponding distribution. For many developmental biologists, this would still be a simplification since it ignores many other aspects of life-histories — especially related to reproductive timing. But it is certainly an interesting starting point. And one that I don’t see pursued enough in the fitness landscape literature.
The downside is that it makes an already pretty vague and unwieldy model — i.e. the fitness landscape — even less precise and even more unwieldy. As such, we should pursue this generalization only if it brings us something concrete and useful. In this post I want to discuss two aspects of this: better integration of evolution with computational learning theory and thinking about supply driven evolution (i.e. arrival of the fittest). In the process, I’ll be drawing heavily on the thoughts of Leslie Valiant and Julian Z. Xue.
Read more of this post
Filed under Commentary, Models, Preliminary Tagged with evolution, fitness landscapes, fitness ontology, Leslie Valiant, machine learning