Spatializing the Go-vs-Grow game with the Ohtsuki-Nowak transform

Recently, I’ve been thinking a lot about small projects to get students started with evolutionary game theory. One idea that came to mind is to look at games that have been analyzed in the inviscid regime then ‘spatialize’ them and reanalyze them. This is usually not difficult to do and provides some motivation to solving for and making sense of the dynamic regimes of a game. And it is not always pointless, for example, our edge effects paper (Kaznatcheev et al, 2015) is mostly just a spatialization of Basanta et al.’s (2008a) Go-vs-Grow game together with some discussion.

Technically, TheEGG together with that paper have everything that one would need to learn this spatializing technique. However, I realized that my earlier posts on spatializing with the Ohtsuki-Nowak transform might a bit too abstract and the paper a bit too terse for a student who just started with EGT. As such, in this post, I want to go more slowly through a concrete example of spatializing an evolutionary game. Hopefully, it will be useful to students. If you are a beginner to EGT that is reading this post, and something doesn’t make sense then please ask for clarification in the comments.

I’ll use the Go-vs-Grow game as the example. I will focus on the mathematics, and if you want to read about the biological or oncological significance then I encourage you to read Kaznatcheev et al. (2015) in full.
Read more of this post

Chemical games and the origin of life from prebiotic RNA

From bacteria to vertebrates, life — as we know it today — relies on complex molecular interactions, the intricacies of which science has not fully untangled. But for all its complexity, life always requires two essential abilities. Organisms need to preserve their genetic information and reproduce.

In our own cells, these tasks are assigned to specialized molecules. DNA, of course, is the memory store. The information it encodes is expressed into proteins via messenger RNAs.Transcription (the synthesis of mRNAs from DNA) and translation (the synthesis of proteins from mRNAs) are catalyzed by polymerases necessary to speed up the chemical reactions.

It is unlikely that life started that way, with such a refined division of labor. A popular theory for the origin of life, known as the RNA world, posits that life emerged from just one type of molecule: RNAs. Because RNA is made up of base-complementary nucleotides, it can be used as a template for its own reproduction, just like DNA. Since the 1980s, we also know that RNA can act as a self-catalyst. These two superpowers – information storage and self-catalysis – make it a good candidate for the title of the first spark of life on earth.

The RNA-world theory has yet to meet with empirical evidence, but laboratory experiments have shown that self-preserving and self-reproducing RNA systems can be created in vitro. Little is known, however, about the dynamics that governed pre- and early life. In a recent paper, Yeates et al. (2016) attempt to shed light on this problem by (1) examining how small sets of different RNA sequences can compete for survival and reproduction in the lab and (2) offering a game-theoretical interpretation of the results.

Read more of this post

Three mechanisms of dark selection for ruxolitinib resistance

Last week I returned from the 6th annual IMO Workshop at the Moffitt Cancer Center in Tampa, Florida. As I’ve sketched in an earlier post, my team worked on understanding ruxolitinib resistance in chronic myelomonocytic leukemia (CMML). We developed a suite of integrated multi-scale models for uncovering how resistance arises in CMML with no apparent strong selective pressures, no changes in tumour burden, and no genetic changes in the clonal architecture of the tumour. On the morning of Friday, November 11th, we were the final group of five to present. Eric Padron shared the clinical background, Andriy Marusyk set up our paradox of resistance, and I sketched six of our mathematical models, the experiments they define, and how we plan to go forward with the $50k pilot grant that was the prize of this competition.

imo2016_participants

You can look through our whole slide deck. But in this post, I will concentrate on the four models that make up the core of our approach. Three models at the level of cells corresponding to different mechanisms of dark selection, and a model at the level of receptors to justify them. The goal is to show that these models lead to qualitatively different dynamics that are sufficiently different that the models could be distinguished between by experiments with realistic levels of noise.
Read more of this post

Drug holidays and losing resistance with replicator dynamics

A couple of weeks ago, before we all left Tampa, Pranav Warman, David Basanta and I frantically worked on refinements of our model of prostate cancer in the bone. One of the things that David and Pranav hoped to see from the model was conditions under which adaptive therapy (or just treatment interrupted with non-treatment holidays) performs better than solid blocks of treatment. As we struggled to find parameters that might achieve this result, my frustration drove me to embrace the advice of George Pólya: “If you can’t solve a problem, then there is an easier problem you can solve: find it.”

IMO6 LogoIn this case, I opted to remove all mentions of the bone and cancer. Instead, I asked a simpler but more abstract question: what qualitative features must a minimal model of the evolution of resistance have in order for drug holidays to be superior to a single treatment block? In this post, I want to set up this question precisely, show why drug holidays are difficult in evolutionary models, and propose a feature that makes drug holidays viable. If you find this topic exciting then you should consider registering for the 6th annual Integrated Mathematical Oncology workshop at the Moffitt Cancer Center.[1] This year’s theme is drug resistance.
Read more of this post

Multiplicative versus additive fitness and the limit of weak selection

Previously, I have discussed the importance of understanding how fitness is defined in a given model. So far, I’ve focused on how mathematically equivalent formulations can have different ontological commitments. In this post, I want to touch briefly on another concern: two different types of mathematical definitions of fitness. In particular, I will discuss additive fitness versus multiplicative fitness.[1] You often see the former in continuous time replicator dynamics and the latter in discrete time models.

In some ways, these versions are equivalent: there is a natural bijection between them through the exponential map or by taking the limit of infinitesimally small time-steps. A special case of more general Lie theory. But in practice, they are used differently in models. Implicitly changing which definition one uses throughout a model — without running back and forth through the isomorphism — can lead to silly mistakes. Thankfully, there is usually a quick fix for this in the limit of weak selection.

I suspect that this post is common knowledge. However, I didn’t have a quick reference to give to Pranav Warman, so I am writing this.
Read more of this post

Evolutionary dynamics of acid and VEGF production in tumours

Today was my presentation day at ECMTB/SMB 2016. I spoke in David Basanta’s mini-symposium on the games that cancer cells play and postered during the poster session. The mini-symposium started with a brief intro from David, and had 25 minute talks from Jacob Scott, myself, Alexander Anderson, and John Nagy. David, Jake, Sandy, and John are some of the top mathematical oncologists and really drew a crowd, so I felt privileged at the opportunity to address that crowd. It was also just fun to see lots of familiar faces in the same place.

A crowded room by the end of Sandy's presentation.

A crowded room by the end of Sandy’s presentation.

My talk was focused on two projects. The first part was the advertised “Evolutionary dynamics of acid and VEGF production in tumours” that I’ve been working on with Robert Vander Velde, Jake, and David. The second part — and my poster later in the day — was the additional “(+ measuring games in non-small cell lung cancer)” based on work with Jeffrey Peacock, Andriy Marusyk, and Jake. You can download my slides here (also the poster), but they are probably hard to make sense of without a presentation. I had intended to have a preprint out on this prior to today, but it will follow next week instead. Since there are already many blog posts about the double goods project on TheEGG, in this post I will organize them into a single annotated linkdex.

Read more of this post

Modeling influenza at ECMTB/SMB 2016

This week, I am at the University of Nottingham for the joint meeting of the Society of Mathematical Biology and the European Conference on Mathematical and Theoretical Biology — ECMTB/SMB 2016. It is a huge meeting, with over 800 delegates in attendance, 308 half-hour mini-symposium talks, 264 twenty-minute contributed talks, 190 posters, 7 prize talks, 7 plenary talks, and 1 public lecture. With seventeen to eighteen sessions running in parallel, it is impossible to see more than a tiny fraction of the content. And impossible for me to give you a comprehensive account of the event. However, I did want to share some moments from this week. If you are at ECMTB and want to share some of your highlights for TheEGG then let me know, and we can have you guest post.

I did not come to Nottingham alone. Above is a photo of all the current/recent Moffitteers that made their way to the meeting.

I did not come to Nottingham alone. Above is a photo of current/recent Moffitteers that made their way to the meeting this year.

On the train ride to Nottingham, I needed to hear some success stories of mathematical biology. One of the ones that Dan Nichol volunteered was the SIR-model for controlling the spread of infectious disease. This is a simple system of ODEs with three compartments corresponding to the infection status of individuals in the population: susceptible (S), infectious (I), recovered (R). It is given by the following equations

\begin{aligned}  \dot{S} & = - \beta I S \\  \dot{I} & = \beta I S - \gamma I \\  \dot{R} & = \gamma I,  \end{aligned}

where \beta and \gamma are usually taken to be constants dependent on the pathogen, and the total number of individuals N = S + I + R is an invariant of the dynamics.

As the replicator dynamics are to evolutionary game theory, the SIR-model is to epidemiology. And it was where Julia Gog opened the conference with her plenary on the challenges of modeling infectious disease. In this post, I will briefly touch on her extensions of the SIR-model and how she used it to look at the 2009 swine flu outbreak in the US.
Read more of this post

Hamiltonian systems and closed orbits in replicator dynamics of cancer

Last month, I classified the possible dynamic regimes of our model of acidity and vasculature as linear goods in cancer. In one of those dynamic regimes, there is an internal fixed point and I claimed closed orbits around that point. However, I did not justify or illustrate this claim. In this post, I will sketch how to prove that those orbits are indeed closed, and show some examples. In the process, we’ll see how to transform our replicator dynamics into a Hamiltonian system and use standard tricks from classical mechanics to our advantage. As before, my tricks will draw heavily from Hauert et al. (2002) analysis of the optional public good game. Studying this classic paper closely is useful for us because of an analogy that Robert Vander Velde found between the linear version of our double goods model for the Warburg effect and the optional public good game.

The post will mostly be about the mathematics. However, at the end, I will consider an example of how these sort of cyclic dynamics can matter for treatment. In particular, I will consider what happens if we target aerobic glycolysis with a drug like lonidamine but stop the treatment too early.

Read more of this post

Multiple realizability of replicator dynamics

Abstraction is my favorite part of mathematics. I find a certain beauty in seeing structures without their implementations, or structures that are preserved across various implementations. And although it seems possible to reason through analogy without (explicit) abstraction, I would not enjoy being restricted in such a way. In biology and medicine, however, I often find that one can get caught up in the concrete and particular. This makes it harder to remember that certain macro-dynamical properties can be abstracted and made independent of particular micro-dynamical implementations. In this post, I want to focus on a particular pet-peeve of mine: accounts of the replicator equation.

I will start with a brief philosophical detour through multiple realizability, and discuss the popular analogy of temperature. Then I will move on to the phenomenological definition of the replicator equation, and a few realizations. A particular target will be the statement I’ve been hearing too often recently: replicator dynamics are only true for a very large but fixed-size well-mixed population.

Read more of this post

Acidity and vascularization as linear goods in cancer

Last month, Robert Vander Velde discussed a striking similarity between the linear version of our model of two anti-correlated goods and the Hauert et al. (2002) optional public good game. Robert didn’t get a chance to go into the detailed math behind the scenes, so I wanted to do that today. The derivations here will be in the context of mathematical oncology, but will follow the earlier ecological work closely. There is only a small (and generally inconsequential) difference in the mathematics of the double anti-correlated goods and the optional public goods games. Keep your eye out for it, dear reader, and mention it in the comments if you catch it.[1]

In this post, I will remind you of the double goods game for acidity and vascularization, show you how to simplify the resulting fitness functions in the linear case — without using the approximations of the general case — and then classify the possible dynamics. From the classification of dynamics, I will speculate on how to treat the game to take us from one regime to another. In particular, we will see the importance of treating anemia, that buffer therapy can be effective, and not so much for bevacizumab.

Read more of this post