## Dark selection from spatial cytokine signaling networks

November 30, 2017 2 Comments

Greetings, Theory, Evolution, and Games Group! It’s a pleasure to be on the other side of the keyboard today. Many thanks to Artem for the invite to write about some of our recent work and the opportunity to introduce myself via this post. I do a bit of blogging of my own over at vcannataro.com — mostly about neat science I stumble over while figuring out my way.

I’m a biologist. I study the evolutionary dynamics within somatic tissue, or, how mutations occur, compete, accumulate, and persist in our tissues, and how these dynamics manifest as aging and cancer (Cannataro et al., 2017a). I also study the evolutionary dynamics within tumors, and the evolution of resistance to targeted therapy (Cannataro et al., 2017b).

In November 2016 I attended the Integrated Mathematical Oncology Workshop on resistance, a workweek-long intensive competitive workshop where winners receive hard-earned $$ for research, and found myself placed in #teamOrange along with Artem. In my experience at said workshop (attended 2015 and 2016), things usually pan out like this: teams of a dozen or so members are assembled by the workshop organizers, insuring a healthy mix of background-education heterogeneity among groups, and then after the groups decide on a project they devise distinct but intersecting approaches to tackle the problem at hand. I bounced around a bit early on within #teamOrange contributing to our project where I could, and when the need for a spatially explicit model of cytokine diffusion and cell response came up I jumped at the opportunity to lead that endeavor. I had created spatially explicit cellular models before — such as a model of cell replacement in the intestinal crypt (Cannataro et al., 2016) — but never one that incorporated the diffusion or spread of some agent through the space. That seemed like a pretty nifty tool to add to my research kit. Fortunately, computational modeler extraordinaire David Basanta was on our team to teach me about modeling diffusion (thanks David!).

Below is a short overview of the model we devised.

## Three mechanisms of dark selection for ruxolitinib resistance

November 25, 2016 by Artem Kaznatcheev 14 Comments

Last week I returned from the 6th annual IMO Workshop at the Moffitt Cancer Center in Tampa, Florida. As I’ve sketched in an earlier post, my team worked on understanding ruxolitinib resistance in chronic myelomonocytic leukemia (CMML). We developed a suite of integrated multi-scale models for uncovering how resistance arises in CMML with no apparent strong selective pressures, no changes in tumour burden, and no genetic changes in the clonal architecture of the tumour. On the morning of Friday, November 11th, we were the final group of five to present. Eric Padron shared the clinical background, Andriy Marusyk set up our paradox of resistance, and I sketched six of our mathematical models, the experiments they define, and how we plan to go forward with the $50k pilot grant that was the prize of this competition.

You can look through our whole slide deck. But in this post, I will concentrate on the four models that make up the core of our approach. Three models at the level of cells corresponding to different mechanisms of dark selection, and a model at the level of receptors to justify them. The goal is to show that these models lead to qualitatively different dynamics that are sufficiently different that the models could be distinguished between by experiments with realistic levels of noise.

Read more of this post

Filed under Commentary, Models, Preliminary, Technical Tagged with conference, IMO workshop, leukemia, mathematical oncology