Deadlock & Leader as deformations of Prisoner’s dilemma & Hawk-Dove games

Recently, I’ve been working on revisions for our paper on measuring the games that cancer plays. One of the concerns raised by the editor is that we don’t spend enough time introducing game theory and in particular the Deadlock and Leader games that we observed. This is in large part due to the fact that these are not the most exciting games and not much theoretic efforts have been spent on them in the past. In fact, none that I know of in mathematical oncology.

With that said, I think it is possible to relate the Deadlock and Leader games to more famous games like Prisoner’s dilemma and the Hawk-Dove games; both that I’ve discussed at length on TheEGG. Given that I am currently at the Lorentz Center in Leiden for a workshop on Understanding Cancer Through Evolutionary Game Theory (follow along on twitter via #cancerEGT), I thought it’d be a good time to give this description here. Maybe it’ll inspire some mathematical oncologists to play with these games.

Read more of this post


Identifying therapy targets & evolutionary potentials in ovarian cancer

For those of us attending the 7th annual Integrated Mathematical Oncology workshop (IMO7) at the Moffitt Cancer Center in Tampa, this week was a gruelling yet exciting set of four near-all-nighters. Participants were grouped into five teams and were tasked with coming up with a new model to elucidate a facet of a particular type of cancer. With $50k on the line and enthusiasm for creating evolutionary models, Team Orange (the wonderful team I had the privilege of being a part of) set out to understand something new about ovarian cancer. In this post, I will outline my perspective on the initial model we came up with over the past week.

Read more of this post

Hackathons and a brief history of mathematical oncology

It was Friday — two in the morning. And I was busy fine-tuning a model in Mathematica and editing slides for our presentation. My team and I had been running on coffee and snacks all week. Most of us had met each other for the first time on Monday, got an inkling of the problem space we’d be working on, brainstormed, and hacked together a number of equations and a few chunks of code to prototype a solution. In seven hours, we would have to submit our presentation to the judges. Fifty thousand dollars in start-up funding was on the line.

A classic hackathon, except for one key difference: my team wasn’t just the usual mathematicians, programmers, computer & physical scientists. Some of the key members were biologists and clinicians specializing in blood cancers. And we weren’t prototyping a new app. We were trying to predict the risk of relapse for patients with chronic myeloid leukemia, who had stopped receiving imatinib. This was 2013 and I was at the 3rd annual integrated mathematical oncology workshop. It was one of my first exposures to using mathematical and computational tools to study cancer; the field of mathematical oncology.

As you can tell from other posts on TheEGG, I’ve continued thinking about and working on mathematical oncology. The workshops have also continued. The 7th annual IMO workshop — focused on stroma this year — is starting right now. If you’re not in Tampa then you can follow #MoffittIMO on twitter.

Since I’m not attending in person this year, I thought I’d provide a broad overview based on an article I wrote for Oxford Computer Science’s InSPIRED Research (see pg. 20-1 of this pdf for the original) and a paper by Helen Byrne (2010).

Read more of this post

Oxygen fueling dark selection in the bone marrow

While November 2016 might be remembered for the inauspicious political upset likely to leave future historians as confused as we are, a more positive event transpired in tandem – the 6th Integrated Mathematical Oncology (IMO) Workshop. I was honoured to take part as a member of Team Orange, where we were tasked with investigating the emergence of treatment resistance in chronic myelomonocytic leukemia (CMML).

Unlike many other cancers where the evolution of resistance to treatment is well understood, CMML is something of an enigma as the efficacy of treatment flounders even though the standard treatment doesn’t directly impinge upon tumour cells themselves.  This raises a whole host of questions, and Artem has already eloquently laid out both why this question captivated us, and the combined approach we took to probing it. In this blog post, I’ll focus on exploring one of our mechanistic hypotheses – the potential role of oxygen in treatment resistance.

Read more of this post

Three mechanisms of dark selection for ruxolitinib resistance

Last week I returned from the 6th annual IMO Workshop at the Moffitt Cancer Center in Tampa, Florida. As I’ve sketched in an earlier post, my team worked on understanding ruxolitinib resistance in chronic myelomonocytic leukemia (CMML). We developed a suite of integrated multi-scale models for uncovering how resistance arises in CMML with no apparent strong selective pressures, no changes in tumour burden, and no genetic changes in the clonal architecture of the tumour. On the morning of Friday, November 11th, we were the final group of five to present. Eric Padron shared the clinical background, Andriy Marusyk set up our paradox of resistance, and I sketched six of our mathematical models, the experiments they define, and how we plan to go forward with the $50k pilot grant that was the prize of this competition.


You can look through our whole slide deck. But in this post, I will concentrate on the four models that make up the core of our approach. Three models at the level of cells corresponding to different mechanisms of dark selection, and a model at the level of receptors to justify them. The goal is to show that these models lead to qualitatively different dynamics that are sufficiently different that the models could be distinguished between by experiments with realistic levels of noise.
Read more of this post

Dark selection and ruxolitinib resistance in myeloid neoplasms

I am weathering the US election in Tampa, Florida. For this week, I am back at the Moffitt Cancer Center to participate in the 6th annual IMO Workshop. The 2016 theme is one of the biggest challenges to current cancer treatment: therapy resistance. All five teams participating this year are comfortable with the evolutionary view of cancer as a highly heterogeneous disease. And up to four of the teams are ready to embrace and refine a classic model of resistance. The classic model that supposes that:

  • treatment changes the selective pressure on the treatment-naive tumour.
  • This shifting pressure creates a proliferative or survival difference between sensitive cancer cells and either an existing or de novo mutant.
  • The resistant cells then outcompete the sensitive cells and — if further interventions (like drug holidays or new drugs or dosage changes) are not pursued — take over the tumour: returning it to a state dangerous to the patient.

Clinically this process of response and relapse is usually characterised by a (usually rapid) decrease in tumour burden, a transient period of low tumour burden, and finally a quick return of the disease.

But what if your cancer isn’t very heterogeneous? What if there is no proliferative or survival differences introduced by therapy among the tumour cells? And what if you don’t see the U curve of tumour burden? But resistance still emerges. This year, that is the paradox facing team orange as we look at chronic myelomonocytic leukemia (CMML) and other myeloid neoplasms.

CMML is a leukemia that usually occurs in the elderly and is the most frequent myeloproliferative neoplasm (Vardiman et al., 2009). It has a median survival of 30 months, with death coming from progression to AML in 1/3rd of cases and cytopenias in the others. In 2011, the dual JAK1/JAK2 inhibitor ruxolitinib was approved for treatment of the related cancer of myelofibrosis based on its ability to releave the symptoms of the disease. Recently, it has also started to see use for CMML.

When treating these cancers with ruxolitinib, Eric Padron — our clinical leader alongside David Basanta and Andriy Marusyk — sees the drastic reduction and then relapse in symptoms (most notably fatigue and spleen size) but none of the microdynamical signs of the classic model of resistance. We see the global properties of resistance, but not the evidence of selection. To make sense of this, our team has to illuminate the mechanism of an undetected — dark — selection. Once we classify this microdynamical mechanism, we can hope to refine existing therapies or design new therapies to adapt to it.

Read more of this post

Evolutionary dynamics of acid and VEGF production in tumours

Today was my presentation day at ECMTB/SMB 2016. I spoke in David Basanta’s mini-symposium on the games that cancer cells play and postered during the poster session. The mini-symposium started with a brief intro from David, and had 25 minute talks from Jacob Scott, myself, Alexander Anderson, and John Nagy. David, Jake, Sandy, and John are some of the top mathematical oncologists and really drew a crowd, so I felt privileged at the opportunity to address that crowd. It was also just fun to see lots of familiar faces in the same place.

A crowded room by the end of Sandy's presentation.

A crowded room by the end of Sandy’s presentation.

My talk was focused on two projects. The first part was the advertised “Evolutionary dynamics of acid and VEGF production in tumours” that I’ve been working on with Robert Vander Velde, Jake, and David. The second part — and my poster later in the day — was the additional “(+ measuring games in non-small cell lung cancer)” based on work with Jeffrey Peacock, Andriy Marusyk, and Jake. You can download my slides here (also the poster), but they are probably hard to make sense of without a presentation. I had intended to have a preprint out on this prior to today, but it will follow next week instead. Since there are already many blog posts about the double goods project on TheEGG, in this post I will organize them into a single annotated linkdex.

Read more of this post

Modeling influenza at ECMTB/SMB 2016

This week, I am at the University of Nottingham for the joint meeting of the Society of Mathematical Biology and the European Conference on Mathematical and Theoretical Biology — ECMTB/SMB 2016. It is a huge meeting, with over 800 delegates in attendance, 308 half-hour mini-symposium talks, 264 twenty-minute contributed talks, 190 posters, 7 prize talks, 7 plenary talks, and 1 public lecture. With seventeen to eighteen sessions running in parallel, it is impossible to see more than a tiny fraction of the content. And impossible for me to give you a comprehensive account of the event. However, I did want to share some moments from this week. If you are at ECMTB and want to share some of your highlights for TheEGG then let me know, and we can have you guest post.

I did not come to Nottingham alone. Above is a photo of all the current/recent Moffitteers that made their way to the meeting.

I did not come to Nottingham alone. Above is a photo of current/recent Moffitteers that made their way to the meeting this year.

On the train ride to Nottingham, I needed to hear some success stories of mathematical biology. One of the ones that Dan Nichol volunteered was the SIR-model for controlling the spread of infectious disease. This is a simple system of ODEs with three compartments corresponding to the infection status of individuals in the population: susceptible (S), infectious (I), recovered (R). It is given by the following equations

\begin{aligned}  \dot{S} & = - \beta I S \\  \dot{I} & = \beta I S - \gamma I \\  \dot{R} & = \gamma I,  \end{aligned}

where \beta and \gamma are usually taken to be constants dependent on the pathogen, and the total number of individuals N = S + I + R is an invariant of the dynamics.

As the replicator dynamics are to evolutionary game theory, the SIR-model is to epidemiology. And it was where Julia Gog opened the conference with her plenary on the challenges of modeling infectious disease. In this post, I will briefly touch on her extensions of the SIR-model and how she used it to look at the 2009 swine flu outbreak in the US.
Read more of this post

Cytokine storms during CAR T-cell therapy for lymphoblastic leukemia

For most of the last 70 years or so, treating cancer meant one of three things: surgery, radiation, or chemotherapy. In most cases, some combination of these remains the standard of care. But cancer research does not stand still. More recent developments have included a focus on immunotherapy: using, modifying, or augmenting the patient’s natural immune system to combat cancer. Last week, we pushed the boundaries of this approach forward at the 5th annual Integrated Mathematical Oncology Workshop. Divided into four teams of around 15 people each — mathematicians, biologists, and clinicians — we competed for a $50k start-up grant. This was my 3rd time participating,[1] and this year — under the leadership of Arturo Araujo, Marco Davila, and Sungjune Kim — we worked on chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. CARs for ALL.

Team Red busy at work in the collaboratorium

Team Red busy at work in the collaboratorium. Photo by team leader Arturo Araujo.

In this post I will describe the basics of acute lymphoblastic leukemia, CAR T-cell therapy, and one of its main side-effects: cytokine release syndrome. I will also provide a brief sketch of a machine learning approach to and justification for modeling the immune response during therapy. However, the mathematical details will come in future posts. This will serve as a gentle introduction.

Read more of this post

Abusing numbers and the importance of type checking

What would you say if I told you that I could count to infinity on my hands? Infinity is large, and I have a typical number of fingers. Surely, I must be joking. Well, let me guide you through my process. Since you can’t see me right now, you will have to imagine my hands. When I hold out the thumb on my left hand, that’s one, and when I hold up the thumb and the index finger, that’s two. Actually, we should be more rigorous, since you are imagining my fingers, it actually isn’t one and two, but i and 2i. This is why they call them imaginary numbers.

Let’s continue the process of extending my (imaginary) fingers from the leftmost digits towards the right. When I hold out my whole left hand and the pinky, ring, and middle fingers on my right hand, I have reached 8i.

But this doesn’t look like what I promised. For the final step, we need to remember the geometric interpretation of complex numbers. Multiplying by i is the same thing as rotating counter-clockwise by 90 degrees in the plane. So, let’s rotate our number by 90 degrees and arrive at \infty.

I just counted to infinity on my hands.

Of course, I can’t stop at a joke. I need to overanalyze it. There is something for scientists to learn from the error that makes this joke. The disregard for the type of objects and jumping between two different — and usually incompatible — ways of interpreting the same symbol is something that scientists, both modelers and experimentalists, have to worry about it.

Rigorous proof

If you want an actually funny joke of this type then I recommend the image of a ‘rigorous proof’ above that was tweeted by Moshe Vardi. My writen version was inspired by a variant on this theme mentioned on Reddit by jagr2808.

I will focus this post on the use of types from my experience with stoichiometry in physics. Units in physics allow us to perform sanity checks after long derivations, imagine idealized experiments, and can even suggest refinements of theory. These are all features that evolutionary game theory, and mathematical biology more broadly, could benefit from. And something to keep in mind as clinicians, biologists, and modelers join forces this week during the 5th annual IMO Workshop at the Moffitt Cancer Center.

Read more of this post