Dark selection from spatial cytokine signaling networks

Greetings, Theory, Evolution, and Games Group! It’s a pleasure to be on the other side of the keyboard today. Many thanks to Artem for the invite to write about some of our recent work and the opportunity to introduce myself via this post. I do a bit of blogging of my own over at vcannataro.com — mostly about neat science I stumble over while figuring out my way.

I’m a biologist. I study the evolutionary dynamics within somatic tissue, or, how mutations occur, compete, accumulate, and persist in our tissues, and how these dynamics manifest as aging and cancer (Cannataro et al., 2017a). I also study the evolutionary dynamics within tumors, and the evolution of resistance to targeted therapy (Cannataro et al., 2017b).

In November 2016 I attended the Integrated Mathematical Oncology Workshop on resistance, a workweek-long intensive competitive workshop where winners receive hard-earned $$ for research, and found myself placed in #teamOrange along with Artem. In my experience at said workshop (attended 2015 and 2016), things usually pan out like this: teams of a dozen or so members are assembled by the workshop organizers, insuring a healthy mix of background-education heterogeneity among groups, and then after the groups decide on a project they devise distinct but intersecting approaches to tackle the problem at hand. I bounced around a bit early on within #teamOrange contributing to our project where I could, and when the need for a spatially explicit model of cytokine diffusion and cell response came up I jumped at the opportunity to lead that endeavor. I had created spatially explicit cellular models before — such as a model of cell replacement in the intestinal crypt (Cannataro et al., 2016) — but never one that incorporated the diffusion or spread of some agent through the space. That seemed like a pretty nifty tool to add to my research kit. Fortunately, computational modeler extraordinaire David Basanta was on our team to teach me about modeling diffusion (thanks David!).

Below is a short overview of the model we devised.

Read more of this post

Advertisements

Ratcheting and the Gillespie algorithm for dark selection

In Artem’s previous post about the IMO workshop he suggests that “[s]ince we are forced to move from the genetic to the epigenetic level of description, it becomes important to suggest a plausible mechanism for heritable epigenetic effects. We need to find a stochastic ratcheted phenotypic switch among the pathways of the CMML cells.” Here I’ll go into more detail about modeling this ratcheting and how to go about identifying the mechanism. We can think of this as a potential implementation of the TYK bypass in the JAK-STAT pathway described experimentally by Koppikar et al. (2012). However, I won’t go into the specifics of exact molecules, keeping to the abstract essence.

After David Robert Grime’s post on oxygen use, this is the third entry in our series on dark selection in chronic myelomonocytic leukemia (CMML). We have posted a preprint (Kaznatcheev et al., 2017) on our project to BioRxiv and section 3.1 therein follows this post closely.

Read more of this post

Identifying therapy targets & evolutionary potentials in ovarian cancer

For those of us attending the 7th annual Integrated Mathematical Oncology workshop (IMO7) at the Moffitt Cancer Center in Tampa, this week was a gruelling yet exciting set of four near-all-nighters. Participants were grouped into five teams and were tasked with coming up with a new model to elucidate a facet of a particular type of cancer. With $50k on the line and enthusiasm for creating evolutionary models, Team Orange (the wonderful team I had the privilege of being a part of) set out to understand something new about ovarian cancer. In this post, I will outline my perspective on the initial model we came up with over the past week.

Read more of this post

Oxygen fueling dark selection in the bone marrow

While November 2016 might be remembered for the inauspicious political upset likely to leave future historians as confused as we are, a more positive event transpired in tandem – the 6th Integrated Mathematical Oncology (IMO) Workshop. I was honoured to take part as a member of Team Orange, where we were tasked with investigating the emergence of treatment resistance in chronic myelomonocytic leukemia (CMML).

Unlike many other cancers where the evolution of resistance to treatment is well understood, CMML is something of an enigma as the efficacy of treatment flounders even though the standard treatment doesn’t directly impinge upon tumour cells themselves.  This raises a whole host of questions, and Artem has already eloquently laid out both why this question captivated us, and the combined approach we took to probing it. In this blog post, I’ll focus on exploring one of our mechanistic hypotheses – the potential role of oxygen in treatment resistance.

Read more of this post

Spatializing the Go-vs-Grow game with the Ohtsuki-Nowak transform

Recently, I’ve been thinking a lot about small projects to get students started with evolutionary game theory. One idea that came to mind is to look at games that have been analyzed in the inviscid regime then ‘spatialize’ them and reanalyze them. This is usually not difficult to do and provides some motivation to solving for and making sense of the dynamic regimes of a game. And it is not always pointless, for example, our edge effects paper (Kaznatcheev et al, 2015) is mostly just a spatialization of Basanta et al.’s (2008a) Go-vs-Grow game together with some discussion.

Technically, TheEGG together with that paper have everything that one would need to learn this spatializing technique. However, I realized that my earlier posts on spatializing with the Ohtsuki-Nowak transform might a bit too abstract and the paper a bit too terse for a student who just started with EGT. As such, in this post, I want to go more slowly through a concrete example of spatializing an evolutionary game. Hopefully, it will be useful to students. If you are a beginner to EGT that is reading this post, and something doesn’t make sense then please ask for clarification in the comments.

I’ll use the Go-vs-Grow game as the example. I will focus on the mathematics, and if you want to read about the biological or oncological significance then I encourage you to read Kaznatcheev et al. (2015) in full.
Read more of this post

Fusion and sex in protocells & the start of evolution

In 1864, five years after reading Darwin’s On the Origin of Species, Pyotr Kropotkin — the anarchist prince of mutual aid — was leading a geographic survey expedition aboard a dog-sleigh — a distinctly Siberian variant of the HMS Beagle. In the harsh Manchurian climate, Kropotkin did not see competition ‘red in tooth and claw’, but a flourishing of cooperation as animals banded together to survive their environment. From this, he built a theory of mutual aid as a driving factor of evolution. Among his countless observations, he noted that no matter how selfish an animal was, it still had to come together with others of its species, at least to reproduce. In this, he saw both sex and cooperation as primary evolutionary forces.

Now, Martin A. Nowak has taken up the challenge of putting cooperation as a central driver of evolution. With his colleagues, he has tracked the problem from myriad angles, and it is not surprising that recently he has turned to sex. In a paper released at the start of this month, Sam Sinai, Jason Olejarz, Iulia A. Neagu, & Nowak (2016) argue that sex is primary. We need sex just to kick start the evolution of a primordial cell.

In this post, I want to sketch Sinai et al.’s (2016) main argument, discuss prior work on the primacy of sex, a similar model by Wilf & Ewens, the puzzle over emergence of higher levels of organization, and the difference between the protocell fusion studied by Sinai et al. (2016) and sex as it is normally understood. My goal is to introduce this fascinating new field that Sinai et al. (2016) are opening to you, dear reader; to provide them with some feedback on their preprint; and, to sketch some preliminary ideas for future extensions of their work.

Read more of this post

Three mechanisms of dark selection for ruxolitinib resistance

Last week I returned from the 6th annual IMO Workshop at the Moffitt Cancer Center in Tampa, Florida. As I’ve sketched in an earlier post, my team worked on understanding ruxolitinib resistance in chronic myelomonocytic leukemia (CMML). We developed a suite of integrated multi-scale models for uncovering how resistance arises in CMML with no apparent strong selective pressures, no changes in tumour burden, and no genetic changes in the clonal architecture of the tumour. On the morning of Friday, November 11th, we were the final group of five to present. Eric Padron shared the clinical background, Andriy Marusyk set up our paradox of resistance, and I sketched six of our mathematical models, the experiments they define, and how we plan to go forward with the $50k pilot grant that was the prize of this competition.

imo2016_participants

You can look through our whole slide deck. But in this post, I will concentrate on the four models that make up the core of our approach. Three models at the level of cells corresponding to different mechanisms of dark selection, and a model at the level of receptors to justify them. The goal is to show that these models lead to qualitatively different dynamics that are sufficiently different that the models could be distinguished between by experiments with realistic levels of noise.
Read more of this post

Dark selection and ruxolitinib resistance in myeloid neoplasms

I am weathering the US election in Tampa, Florida. For this week, I am back at the Moffitt Cancer Center to participate in the 6th annual IMO Workshop. The 2016 theme is one of the biggest challenges to current cancer treatment: therapy resistance. All five teams participating this year are comfortable with the evolutionary view of cancer as a highly heterogeneous disease. And up to four of the teams are ready to embrace and refine a classic model of resistance. The classic model that supposes that:

  • treatment changes the selective pressure on the treatment-naive tumour.
  • This shifting pressure creates a proliferative or survival difference between sensitive cancer cells and either an existing or de novo mutant.
  • The resistant cells then outcompete the sensitive cells and — if further interventions (like drug holidays or new drugs or dosage changes) are not pursued — take over the tumour: returning it to a state dangerous to the patient.

Clinically this process of response and relapse is usually characterised by a (usually rapid) decrease in tumour burden, a transient period of low tumour burden, and finally a quick return of the disease.

But what if your cancer isn’t very heterogeneous? What if there is no proliferative or survival differences introduced by therapy among the tumour cells? And what if you don’t see the U curve of tumour burden? But resistance still emerges. This year, that is the paradox facing team orange as we look at chronic myelomonocytic leukemia (CMML) and other myeloid neoplasms.

CMML is a leukemia that usually occurs in the elderly and is the most frequent myeloproliferative neoplasm (Vardiman et al., 2009). It has a median survival of 30 months, with death coming from progression to AML in 1/3rd of cases and cytopenias in the others. In 2011, the dual JAK1/JAK2 inhibitor ruxolitinib was approved for treatment of the related cancer of myelofibrosis based on its ability to releave the symptoms of the disease. Recently, it has also started to see use for CMML.

When treating these cancers with ruxolitinib, Eric Padron — our clinical leader alongside David Basanta and Andriy Marusyk — sees the drastic reduction and then relapse in symptoms (most notably fatigue and spleen size) but none of the microdynamical signs of the classic model of resistance. We see the global properties of resistance, but not the evidence of selection. To make sense of this, our team has to illuminate the mechanism of an undetected — dark — selection. Once we classify this microdynamical mechanism, we can hope to refine existing therapies or design new therapies to adapt to it.

Read more of this post

Don’t take Pokemon Go for dead: a model of product growth

In the last month, some people wrote about the decay in active users for Pokemon Go after its first month, in a tone that presents the game as likely a mere fad – with article on 538, cinemablend and Bloomberg, for example. “Have you deleted Pokémon Go yet?” was even trending on Twitter. Although it is of course certainly possible that this ends up being an accurate description for the game, I posit that such conclusions are rushed. To do so, I examine some systemic reasons that would make the Pokemon Go numbers for August be inevitably lower than those for July, without necessarily implying that the game is doomed to dwindle into irrelevance.

Students in Waterloo playing Pokemon Go. Photo courtesy of Maylin Cui.

Students in Waterloo playing Pokemon Go. Photo courtesy of Maylin Cui.

Others have made similar points before – see this article and the end of this one for example. However, in the spirit of TheEGG, and unlike what most of the press articles can afford to do, we’ll bring some mathematical modeling into our arguments.
Read more of this post

Multiplicative versus additive fitness and the limit of weak selection

Previously, I have discussed the importance of understanding how fitness is defined in a given model. So far, I’ve focused on how mathematically equivalent formulations can have different ontological commitments. In this post, I want to touch briefly on another concern: two different types of mathematical definitions of fitness. In particular, I will discuss additive fitness versus multiplicative fitness.[1] You often see the former in continuous time replicator dynamics and the latter in discrete time models.

In some ways, these versions are equivalent: there is a natural bijection between them through the exponential map or by taking the limit of infinitesimally small time-steps. A special case of more general Lie theory. But in practice, they are used differently in models. Implicitly changing which definition one uses throughout a model — without running back and forth through the isomorphism — can lead to silly mistakes. Thankfully, there is usually a quick fix for this in the limit of weak selection.

I suspect that this post is common knowledge. However, I didn’t have a quick reference to give to Pranav Warman, so I am writing this.
Read more of this post