## Game landscapes: from fitness scalars to fitness functions

April 20, 2019 5 Comments

My biology writing focuses heavily on fitness landscapes and evolutionary games. On the surface, these might seem fundamentally different from each other, with their only common feature being that they are both about evolution. But there are many ways that we can interconnect these two approaches.

The most popular connection is to view these models as two different extremes in terms of time-scale.

When we are looking at evolution on short time-scales, we are primarily interested which of a limited number of extant variants will take over the population or how they’ll co-exist. We can take the effort to model the interactions of the different types with each other, and we summarize these interactions as games.

But when we zoom out to longer and longer timescales, the importance of these short term dynamics diminish. And we start to worry about how new types arise and take over the population. At this timescale, the details of the type interactions are not as important and we can just focus on the first-order: fitness. What starts to matter is how fitness of nearby mutants compares to each other, so that we can reason about long-term evolutionary trajectories. We summarize this as fitness landscapes.

From this perspective, the fitness landscapes are the more foundational concept. Games are the details that only matter in the short term.

But this isn’t the only perspective we can take. In my recent contribution with Peter Jeavons to Russell Rockne’s 2019 Mathematical Oncology Roadmap, I wanted to sketch a different perspective. In this post I want to sketch this alternative perspective and discuss how ‘game landscapes’ generalize the traditional view of fitness landscapes. In this way, the post can be viewed as my third entry on progressively more general views of fitness landscapes. The previous two were on generalizing the NK-model, and replacing scalar fitness by a probability distribution.

In this post, I will take this exploration of fitness landscapes a little further and finally connect to games. Nothing profound will be said, but maybe it will give another look at a well-known object.

## Fitness distributions versus fitness as a summary statistic: algorithmic Darwinism and supply-driven evolution

March 2, 2019 by Artem Kaznatcheev 4 Comments

For simplicity, especially in the fitness landscape literature, fitness is often treated as a scalar — usually a real number. If our fitness landscape is on genotypes then each genotype has an associated scalar value of fitness. If our fitness landscape is on phenotypes then each phenotype has an associated scalar value of fitness.

But this is a little strange. After all, two organisms with the same genotype or phenotype don’t necessarily have the same number of offspring or other life outcomes. As such, we’re usually meant to interpret the value of fitness as the mean of some random variable like number of children. But is the mean the right summary statistic to use? And if it is then which mean: arithmetic or geometric or some other?

One way around this is to simply not use a summary statistic, and instead treat fitness as a random variable with a corresponding distribution. For many developmental biologists, this would still be a simplification since it ignores many other aspects of life-histories — especially related to reproductive timing. But it is certainly an interesting starting point. And one that I don’t see pursued enough in the fitness landscape literature.

The downside is that it makes an already pretty vague and unwieldy model — i.e. the fitness landscape — even less precise and even more unwieldy. As such, we should pursue this generalization only if it brings us something concrete and useful. In this post I want to discuss two aspects of this: better integration of evolution with computational learning theory and thinking about supply driven evolution (i.e. arrival of the fittest). In the process, I’ll be drawing heavily on the thoughts of Leslie Valiant and Julian Z. Xue.

Read more of this post

Filed under Commentary, Models, Preliminary Tagged with evolution, fitness landscapes, fitness ontology, Leslie Valiant, machine learning