April 6, 2014
by Artem Kaznatcheev

In 1936, Alonzo Church, Alan Turing, and Emil Post each published independent papers on the *Entscheidungsproblem* and introducing the lambda calculus, Turing machines, and Post-Turing machines as mathematical models of computation. A myriad of other models followed, many of them taking seemingly unrelated approaches to the computable: algebraic, combinatorial, linguistic, logical, mechanistic, etc. Of course, all of these models were shown to be equivalent in what they could compute and this great heuristic coherence lead mathematicians to formulate the Church-Turing thesis. As with many important philosophical notions, over the last three-quarters of a century, the thesis has gradually changed. In a semi-historic style, I will identify three progressively more empirical formulations with Kleene, Post, and Gandy. For this article, I will focus on the purely mathematical formulation by Kleene, and reserve the psychological and physical variants for next time.

Mathematicians and logicians begat the Church-Turing thesis, so at its inception it was a hypothesis about the Platonic world of mathematical ideas and not about the natural world. There are those that follow Russell (and to some extent Hilbert) and identify mathematics with tautologies. This view is not typically held among mathematicians, who following in the footsteps of Godel know how important it is to distinguish between the true and the provable. Here I side with Lakatos in viewing logic and formal systems as tools to verify and convince others about our intuitions of the mathematical world. Due to Godel’s incompleteness theorems and decades of subsequent results, we know that no single formal system will be a perfect lens on the world of mathematics, but we do have prefered one like ZFC.

Read more of this post

## Multiple realizability of replicator dynamics

June 9, 2016 by Artem Kaznatcheev 3 Comments

Abstraction is my favorite part of mathematics. I find a certain beauty in seeing structures without their implementations, or structures that are preserved across various implementations. And although it seems possible to reason through analogy without (explicit) abstraction, I would not enjoy being restricted in such a way. In biology and medicine, however, I often find that one can get caught up in the concrete and particular. This makes it harder to remember that certain macro-dynamical properties can be abstracted and made independent of particular micro-dynamical implementations. In this post, I want to focus on a particular pet-peeve of mine: accounts of the replicator equation.

I will start with a brief philosophical detour through multiple realizability, and discuss the popular analogy of temperature. Then I will move on to the phenomenological definition of the replicator equation, and a few realizations. A particular target will be the statement I’ve been hearing too often recently: replicator dynamics are only true for a very large but fixed-size well-mixed population.

Read more of this post

Filed under Analytic, Commentary, Preliminary, Technical Tagged with Alan Turing, fitness ontology, metamodeling, operationalization, philosophy of science, replicator dynamics