Recent Posts
- Principles of biological computation: from circadian clock to evolution
- The science and engineering of biological computation: from process to software to DNA-based neural networks
- Elements of biological computation & stochastic thermodynamics of life
- Rationality, the Bayesian mind and their limits
- Web of C-lief: conjectures vs. model assumptions vs. scientific beliefs
- Idealization vs abstraction for mathematical models of evolution
- Allegory of the replication crisis in algorithmic trading
- 671,072 views
Join 2,752 other subscribers
Contributing authors
-
Abel Molina
-
Alexandru Strimbu
-
Alexander Yartsev
-
Eric Bolo
-
David Robert Grimes
-
Forrest Barnum
-
Jill Gallaher
-
Julian Xue
-
Artem Kaznatcheev
-
Keven Poulin
-
Marcel Montrey
-
Matthew Wicker
-
Dan Nichol
-
Philip Gerlee
-
Piotr MigdaĆ
-
Robert Vander Velde
-
Rob Noble
-
Sergio Graziosi
-
Max Hartshorn
-
Thomas Shultz
-
Vincent Cannataro
-
Yunjun Yang
Algorithmic view of historicity and separation of scales in biology
May 21, 2013 by Artem Kaznatcheev 18 Comments
A Science publications is one of the best ways to launch your career, especially if it is based on your undergraduate work, part of which you carried out with makeshift equipment in your dorm! That is the story of Thomas M.S. Chang, who in 1956 started experiments (partially carried out in his residence room in McGill’s Douglas Hall) that lead to the creation of the first artificial cell (Chang, 1964). This was — in the words of the 1989 New Scientists — an “elegantly simple and intellectually ambitious” idea that “has grown into a dynamic field of biomedical research and development.” A field that promises to connect biology and computer science by physically realizing John von Neumann’s dream of a self-replication machine.
Read more of this post
Filed under Commentary, Reviews Tagged with abiogenesis, Alan Turing, cognitive science, conference, evolution, historicity, Leslie Valiant, machine learning, natural algorithms, single cell organisms, social learning, synthetic biology