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Triangle

Idealization Abstraction

How do we reason about arbitrary triangles? 

Theoretical Abstraction

Kaznatcheev, A. (2019) 

Computational complexity as an ultimate constraint on evolution

Genetics, 302000.2019



Fitness Landscapes and Constraints
Some mapping from genotypes (or phenotypes) to fitness.  

+ an idea of which genotypes (or phenotypes) are near 
each other and which are not.

A genotype is a local fitness peak if all nearby 
genotypes are of the same or lower fitness

A constraint is anything that prevents evolution 
from finding a local fitness peak

Algorithms and Problems
Different population structures, developmental structures, 
trait co-variants, standing variation, etc…  

can produce different evolutionary dynamics and 
correspond to different algorithms

Families of different fitness landscapes  
correspond to different problems

proximal constraints

ultimate constraints

“In a rugged field of this character selection will easily 
carry the species to the nearest peak”

- Wright (1932)
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Fitness Landscapes and Constraint of Computation
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Landscape 
type

Max allowed 
epistasis type Hardness of reaching local optima

smooth

magnitude

Easy for all strong-selection weak-mutation (SSWM) dynamics

semismooth

sign

Hard for SSWM with random fitter mutant or fittest mutant dynamics

rugged

reciprocal sign

Hard for all SSWM dynamics: initial genotypes with all adaptive paths 
of exponential lengths


Hard for all evolutionary dynamics (if FP != PLS)


Easy for finding approximate local peaks with moderate optimality 
gap: selection coefficient can drop-off as power law 

Hard for approximate local peaks with small optimality gap: selection 
coefficient cannot drop-off exponentially
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Idealization Abstraction

What if we only care about the area of triangles? 

Empirical Abstraction

Kaznatcheev, A., Peacock, J., Basanta, D., Marusyk, A. & Scott, J.G. (2019) 

Fibroblasts and Alectinib switch the evolutionary games played by non-small cell lung cancer

Nature Ecology & Evolution 12(108): 20150154.

Kaznatcheev, A. (2017) 

Two conceptions of evolutionary games: reductive vs effective.

BioRxiv: 231993.



Reductive vs effective games (in cancer)
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(a) Replicator dynamics for parental-resistant NSCLC. (b) Two dimensional game space.

Figure 4: Measured games. (a) Replicator dynamics. Consider an idealized population of two strategies
in a competitive co-culture: parental (P ) and resistant (R). When a subpopulation of P interacts with P the
subpopulation experiences a fitness e↵ect A; when P interacts with R then P experience fitness e↵ect B and R
a fitness e↵ect C; two Rs interact with fitness e↵ects D, summarized in the matrix. This can be interpreted as
an idealized exponential growth model for the number of parental (NP ) and resistant (NR) cells. The dynamics
of the proportion of parental cells p = NP

NP+NR
over time is described by the replicator equation (bottom). In

Supplementary Information Section E we discuss a purely experimental interpretation based on Kaznatcheev [1].
(b) Mapping of the four measured in vitro games into game space. The x-axis is relative fitness of a
resistant focal in a parental monotypic culture: C �A; y-axis is relative fitness of a parental focal in a resistant
monotypic culture: B �D. Games measured in our experimental system are given as specific points with error
bars based on goodness of fit of linear fitness functions in Figure 3. The games corresponding to our conditions
are given as matrices (with entries multiplied by a factor of 100) by their label. See Supplementary Information
Section C for more details. The game space is composed of four possible dynamical regimes, one for each
quadrant. The typical dynamics of each dynamic regime are represented as qualitative flow diagram between P
and R: an upward cyan arrow corresponds to an increase in the parental proportion, and a downward magenta
arrow correspond to an increase in the resistant proportion. In the case of the two dynamic regimes observed
in our NSCLC system, we also include insets of measured dynamics (c,d): Experimental time-series of
proportion of parental cells for DMSO + CAF (c) and Alectinib + CAF (d). Each line corresponds
to the time dynamics of a separate well. A line is coloured magenta if proportion of resistant cells increased from
start to end; cyan if proportion of parental cells increased; black if statistically indistinguishable proportions
at start and end (where start/end are defined as the first/last 5 time-pints (20 hours)). See Supplementary
Figure 1 for proportion dynamics of all four games and Supplementary Figure 2 for density dynamics and their
correspondence to the exponential growth model from Figure 4a.
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What can oncology do for EGT? See 
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Pope A14
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