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How do we reason about arbitrary triangles?

Theoretical Abstraction

Kaznatcheey, A. (2019)
Computational complexity as an ultimate constraint on evolution
Genetics, 302000.2019



Fithess Landscapes and Constraints

Some mapping from genotypes (or phenotypes) to fitness.

+ an idea of which genotypes (or phenotypes) are near
\ each other and which are not.

“In a rugged field of this character selection will easily
carry the species to the nearest peak”

- Wright (1932)



Fithess Landscapes and Constraints

D Some mapping from genotypes (or phenotypes) to fitness.

+ an idea of which genotypes (or phenotypes) are near
1 ?;\each other and which are not.

| ‘\\ A genotype is a local fithess peak if all nearby
| genotypes are of the same or lower fitness

A constraint is anything that prevents evolution
from finding a local fitness peak

“In a rugged field of this character selection will easily
carry the species to the nearest peak”

- Wright (1932)



Fithess Landscapes and Constraints

B Some mapping from genotypes (or phenotypes) to fitness.
i \ AN + an idea of which genotypes (or phenotypes) are near
HUNY ‘\ [0/ each other and which are not.

A genotype is a local fithess peak if all nearby
genotypes are of the same or lower fitness

A constraint is anything that prevents evolution
from finding a local fitness peak

Algorithms and Problems

Different population structures, developmental structures,
trait co-variants, standing variation, etc...
can produce different evolutionary dynamics and
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Families of different fitness landscapes
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Fithess Landscapes and Constraint of Computation
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Fithess Landscapes and Constraint of Computation
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Kaznatcheev, A. (2019)
Computational complexity as an ultimate constraint on evolution
Genetics, 302000.2019

log
2—1log 3
Theorem 24. There exist semismooth fitness landscapes on 2nmg loci that with probability 1 — 6, take 2™ or more fittest mutant
steps to reach their fitness peak from a starting genotype sampled uniformly at random.

Now, for any probability of failure 0 <6 <1, let ms =

(where log is base 2).

Theorem 27. Finding a local optimum in the NK fitness landscape with K = 2 is PLS-complete.

Theorem 35.IfPLS # P and 10g(fna /fs) € O(n*) then (for NK-model with K = 2) a local s-approximate peak cannot be found in
time polynomial in n and log <.



Landscape Max allowed

; . i Hardness of reaching local optima
type . epistasis type
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. sign

EHard for all SSWM dynamics: initial genotypes with all adaptive paths

AR .of exponential lengths

. / \ Hard for all evolutionary dynamics (if FP = PLS)

rugged Ab ab EEasy for finding approximate local peaks with moderate optimality

| \ / .gap: selection coefficient can drop-off as power law

ab |

EHard for approximate local peaks with small optimality gap: selection

 coefficient cannot drop-off exponentially
reciprocal sign |



What if we only care about the area of triangles?

Empirical Abstraction

Kaznatcheev, A. (2017)
Two conceptions of evolutionary games: reductive vs effective.
BioRxiv: 231993.

Kaznatcheey, A., Peacock, J., Basanta, D., Marusyk, A. & Scott, J.G. (2019)
Fibroblasts and Alectinib switch the evolutionary games played by non-small cell lung cancer
Nature Ecology & Evolution 12(108): 20150154.



Reductive vs effective games (in cancer)
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Reductive vs effective games (in cancer)
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(a) Replicator dynamics for parental-resistant NSCLC.
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(b) Two dimensional game space.
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Fibroblasts and Alectinib switch the evolutionary games played by non-small cell lung cancer

Nature Ecology & Evolution 12(108): 20150154.
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