Eukaryotes without Mitochondria and Aristotle’s Ladder of Life

In 348/7 BC, fearing anti-Macedonian sentiment or disappointed with the control of Plato’s Academy passing to Speusippus, Aristotle left Athens for Asian Minor across the Aegean sea. Based on his five years[1] studying of the natural history of Lesbos, he wrote the pioneering work of zoology: The History of Animals. In it, he set out to catalog the what of biology before searching for the answers of why. He initiated a tradition of naturalists that continues to this day.

Aristotle classified his observations of the natural world into a hierarchical ladder of life: humans on top, above the other blooded animals, bloodless animals, and plants. Although we’ve excised Aristotle’s insistence on static species, this ladder remains for many. They consider species as more complex than their ancestors, and between the species a presence of a hierarchy of complexity with humans — as always — on top. A common example of this is the rationality fetish that views Bayesian learning as a fixed point of evolution, or ranks species based on intelligence or levels-of-consciousness. This is then coupled with an insistence on progress, and gives them the what to be explained: the arc of evolution is long, but it bends towards complexity.

In the early months of TheEGG, Julian Xue turned to explaining the why behind the evolution of complexity with ideas like irreversible evolution as the steps up the ladder of life.[2] One of Julian’s strongest examples of such an irreversible step up has been the transition from prokaryotes to eukaryotes through the acquisition of membrane-bound organelles like mitochondria. But as an honest and dedicated scholar, Julian is always on the lookout for falsifications of his theories. This morning — with an optimistic “there goes my theory” — he shared the new Kamkowska et al. (2016) paper showing a surprising what to add to our natural history: a eukaryote without mitochondria. An apparent example of a eukaryote stepping down a rung in complexity by losing its membrane-bound ATP powerhouse.
Read more of this post

Advertisements

Mutation-bias driving the evolution of mutation rates

In classic game theory, we are often faced with multiple potential equilibria between which to select with no unequivocal way to choose between these alternatives. If you’ve ever heard Artem justify dynamic approaches, such as evolutionary game theory, then you’ve seen this equilibrium selection problem take center stage. Natural selection has an analogous ‘problem’ of many local fitness peaks. Is the selection between them simply an accidental historical process? Or is there a method to the madness that is independent of the the environment that defines the fitness landscape and that can produce long term evolutionary trends?

Two weeks ago, in my first post of this series, I talked about an idea Wallace Arthur (2004) calls “developmental bias”, where the variation of traits in a population can determine which fitness peak the population evolves to. The idea is that if variation is generated more frequently in a particular direction, then fitness peaks in that direction are more easily discovered. Arthur hypothesized that this mechanism can be responsible for long-term evolutionary trends.

A very similar idea was discovered and called “mutation bias” by Yampolsky & Stoltzfus (2001). The difference between mutation bias and developmental bias is that Yampolsky & Stoltzfus (2001) described the idea in the language of discrete genetics rather than trait-based phenotypic evolution. They also did not invoke developmental biology. The basic mechanism, however, was the same: if a population is confronted with multiple fitness peaks nearby, mutation bias will make particular peaks much more likely.

In this post, I will discuss the Yampolsky & Stoltzfus (2001) “mutation bias”, consider applications of it to the evolution of mutation rates by Gerrish et al. (2007), and discuss how mutation is like and unlike other biological traits.

Read more of this post

Variation for supply driven evolution

I’ve taken a very long hiatus (nearly 5 years!) from this blog. I suppose getting married and getting an MD are good excuses, but Artem has very kindly let me return. And I greatly appreciate this chance, because I’d like to summarize an idea I had been working on for a while. So far, only two publication has come out of it (Xue et al., 2015a,b), but it’s an idea that has me excited. So excited that I defended a thesis on it this Tuesday. For now, I call it supply-driven evolution, where I try to show how the generation of variation can determine long-term evolution.

Evolutionary theoreticians have long known that how variation is generated has a decisive role in evolutionary outcome. The reason is that natural selection can only choose among what has been generated, so focusing on natural selection will not produce a full understanding of evolution. But how does variation affect evolution, and can variation be the decisive factor in how evolution proceeds? I believe that the answer is “frequently, yes,” because it does not actually compete with natural selection. I’ll do a brief overview of the literature in the first few posts. By the end, I hope how this mechanism can explain some forms of irreversible evolution, stuff I had blogged about five years ago.

Read more of this post