Coarse-graining vs abstraction and building theory without a grounding

Back in September 2017, Sandy Anderson was tweeting about the mathematical oncology revolution. To which Noel Aherne replied with a thorny observation that “we have been curing cancers for decades with radiation without a full understanding of all the mechanisms”.

This lead to a wide-ranging discussion and clarification of what is meant by terms like mechanism. I had meant to blog about these conversations when they were happening, but the post fell through the cracks and into the long to-write list.

This week, to continue celebrating Rockne et al.’s 2019 Mathematical Oncology Roadmap, I want to revisit this thread.

And not just in cancer. Although my starting example will focus on VEGF and cancer.

I want to focus on a particular point that came up in my discussion with Paul Macklin: what is the difference between coarse-graining and abstraction? In the process, I will argue that if we want to build mechanistic models, we should aim not after explaining new unknown effects but rather focus on effects where we already have great predictive power from simple effective models.

Since Paul and I often have useful disagreements on twitter, hopefully writing about it on TheEGG will also prove useful.

Read more of this post

Game landscapes: from fitness scalars to fitness functions

My biology writing focuses heavily on fitness landscapes and evolutionary games. On the surface, these might seem fundamentally different from each other, with their only common feature being that they are both about evolution. But there are many ways that we can interconnect these two approaches.

The most popular connection is to view these models as two different extremes in terms of time-scale.

When we are looking at evolution on short time-scales, we are primarily interested which of a limited number of extant variants will take over the population or how they’ll co-exist. We can take the effort to model the interactions of the different types with each other, and we summarize these interactions as games.

But when we zoom out to longer and longer timescales, the importance of these short term dynamics diminish. And we start to worry about how new types arise and take over the population. At this timescale, the details of the type interactions are not as important and we can just focus on the first-order: fitness. What starts to matter is how fitness of nearby mutants compares to each other, so that we can reason about long-term evolutionary trajectories. We summarize this as fitness landscapes.

From this perspective, the fitness landscapes are the more foundational concept. Games are the details that only matter in the short term.

But this isn’t the only perspective we can take. In my recent contribution with Peter Jeavons to Russell Rockne’s 2019 Mathematical Oncology Roadmap, I wanted to sketch a different perspective. In this post I want to sketch this alternative perspective and discuss how ‘game landscapes’ generalize the traditional view of fitness landscapes. In this way, the post can be viewed as my third entry on progressively more general views of fitness landscapes. The previous two were on generalizing the NK-model, and replacing scalar fitness by a probability distribution.

In this post, I will take this exploration of fitness landscapes a little further and finally connect to games. Nothing profound will be said, but maybe it will give another look at a well-known object.

Read more of this post

Colour, psychophysics, and the scientific vs. manifest image of reality

Recently on TheEGG, I’ve been writing a lot about the differences between effective (or phenomenological) and reductive theories. Usually, I’ve confined this writing to evolutionary biology; especially the tension between effective and reductive theories in the biology of microscopic systems. For why this matters to evolutionary game theory, see Kaznatcheev (2017, 2018).

But I don’t think that microscopic systems are the funnest place to see this interplay. The funnest place to see this is in psychology.

In the context of psychology, you can add an extra philosophical twist. Instead of differentiating between reductive and effective theories; a more drastic difference can be drawn between the scientific and manifest image of reality.

In this post, I want to briefly talk about how our modern theories of colour vision developed. This is a nice example of good effective theory leading before any reductive basis. And with that background in mind, I want to ask the question: are colours real? Maybe this will let me connect to some of my old work on interface theories of perception (see Kaznatcheev, Montrey, and Shultz, 2014).

Read more of this post

Constant-sum games as a way from non-cell autonomous processes to constant tumour growth rate

A lot of thinking in cancer biology seems to be focused on cell-autonomous processes. This is the (overly) reductive view that key properties of cells, such as fitness, are intrinsic to the cells themselves and not a function of their interaction with other cells in the tumour. As far as starting points go, this is reasonable. But in many cases, we can start to go beyond this cell-autonomous starting point and consider non-cell-autonomous processes. This is when the key properties of a cell are not a function of just that cell but also its interaction partners. As an evolutionary game theorist, I am clearly partial to this view.

Recently, I was reading yet another preprint that has observed non-cell autonomous fitness in tumours. In this case, Johnson et al. (2019) spotted the Allee effect in the growth kinetics of cancer cells even at extremely low densities (seeding in vitro at <200 cells in a 1 mm^3 well). This is an interesting paper, and although not explicitly game-theoretic in its approach, I think it is worth reading for evolutionary game theorists.

Johnson et al.'s (2019) approach is not explicitly game-theoretic because they consider their in vitro populations as a monomorphic clonal line, and thus don't model interactions between types. Instead, they attribute non-cell autonomous processes to density dependence of the single type on itself. In this setting, they reasonably define the cell-autonomous null-model as constant exponential growth, i.e. \dot{N}_T = w_TN_T for some constant fitness w_T and total tumour size N_T.

It might also be tempting to use the same model to capture cell-autonomous growth in game-theoretic models. But this would be mistaken. For this is only effectively cell-autonomous at the level of the whole tumour, but could hide non-cell-autonomous fitness at the level of the different types that make up the tumour. This apparent cell-autonomous total growth will happen whenever the type interactions are described by constant-sum games.

Given the importance of constant-sum games (more famously known as zero-sum games) to the classical game theory literature, I thought that I would write a quick introductory post about this correspondence between non-cell autonomous constant-sum games and effectively cell-autonomous growth at the level of the whole tumour.

Read more of this post