December 1, 2018
by Artem Kaznatcheev

Plato’s writing and philosophy are widely studied in colleges, and often turned to as founding texts of western philosophy. But if we went out looking for people that embraced the philosophy — if we went out looking for actual Platonist — then I think we would come up empty-handed. Or maybe not?

A tempting counter-example is the mathematician.

It certainly seems that to do mathematics, it helps to imagine the objects that you’re studying as inherently real but in a realm that is separate from your desk, chair and laptop. I am certainly susceptible to this thinking. Some mathematicians might even claim that they are mathematical platonists. But there is sometimes reasons to doubt the seriousness of this claim. As Reuben Hersh wrote in *Some Proposals for Reviving the Philosophy of Mathematics*:

the typical “working mathematician” is a Platonist on weekdays and a formalist on Sundays. That is, when he is doing mathematics, he is convinced that he is dealing with an objective reality whose properties he is attempting to determine. But then, when challenged to give a philosophical account of this reality, he finds it easiest to pretend that he does not believe in it after all.

What explains this discrepency? Is mathematical platonism — or a general vague idealism about mathematical objects — compatible with the actual philosophy attributed to Plato? This is the jist of a question that Conifold asked on the Philosophy StackExchange almost 4 years ago.

In this post, I want to revisit and share my answer. This well let us contrast mathematical platonism with a standard reading of Plato’s thought. After, I’ll take some helpful lessons from postmodernism and consider an alternative reading of Plato. Hopefully this PoMo Plato can suggest some fun thoughts on the old debate on discovery vs invention in mathematics, and better flesh out my Kantian position on the Church-Turing thesis.

Read more of this post

## Plato and the working mathematician on Truth and discourse

December 1, 2018 by Artem Kaznatcheev 1 Comment

Plato’s writing and philosophy are widely studied in colleges, and often turned to as founding texts of western philosophy. But if we went out looking for people that embraced the philosophy — if we went out looking for actual Platonist — then I think we would come up empty-handed. Or maybe not?

A tempting counter-example is the mathematician.

It certainly seems that to do mathematics, it helps to imagine the objects that you’re studying as inherently real but in a realm that is separate from your desk, chair and laptop. I am certainly susceptible to this thinking. Some mathematicians might even claim that they are mathematical platonists. But there is sometimes reasons to doubt the seriousness of this claim. As Reuben Hersh wrote in

Some Proposals for Reviving the Philosophy of Mathematics:What explains this discrepency? Is mathematical platonism — or a general vague idealism about mathematical objects — compatible with the actual philosophy attributed to Plato? This is the jist of a question that Conifold asked on the Philosophy StackExchange almost 4 years ago.

In this post, I want to revisit and share my answer. This well let us contrast mathematical platonism with a standard reading of Plato’s thought. After, I’ll take some helpful lessons from postmodernism and consider an alternative reading of Plato. Hopefully this PoMo Plato can suggest some fun thoughts on the old debate on discovery vs invention in mathematics, and better flesh out my Kantian position on the Church-Turing thesis.

Read more of this post

Filed under Commentary, Preliminary Tagged with algorithmic philosophy, philosophy of math, philosophy of mind, stackexchange