Hobbes on knowledge & computer simulations of evolution

Earlier this week, I was at the Second Joint Congress on Evolutionary Biology (Evol2018). It was overwhelming, but very educational.

Many of the talks were about very specific evolutionary mechanisms in very specific model organisms. This diversity of questions and approaches to answers reminded me of the importance of bouquets of heuristic models in biology. But what made this particularly overwhelming for me as a non-biologist was the lack of unifying formal framework to make sense of what was happening. Without the encyclopedic knowledge of a good naturalist, I had a very difficult time linking topics to each other. I was experiencing the pluralistic nature of biology. This was stressed by Laura Nuño De La Rosa‘s slide that contrasts the pluralism of biology with the theory reduction of physics:

That’s right, to highlight the pluralism, there were great talks from philosophers of biology along side all the experimental and theoretical biology at Evol2018.

As I’ve discussed before, I think that theoretical computer science can provide the unifying formal framework that biology needs. In particular, the cstheory approach to reductions is the more robust (compared to physics) notion of ‘theory reduction’ that a pluralistic discipline like evolutionary biology could benefit from. However, I still don’t have any idea of how such a formal framework would look in practice. Hence, throughout Evol2018 I needed refuge from the overwhelming overstimulation of organisms and mechanisms that were foreign to me.

One of the places I sought refuge was in talks on computational studies. There, I heard speakers emphasize several times that they weren’t “just simulating evolution” but that their programs were evolution (or evolving) in a computer. Not only were they looking at evolution in a computer, but this model organism gave them an advantage over other systems because of its transparency: they could track every lineage, every offspring, every mutation, and every random event. Plus, computation is cheaper and easier than culturing E.coli, brewing yeast, or raising fruit flies. And just like those model organisms, computational models could test evolutionary hypotheses and generate new ones.

This defensive emphasis surprised me. It suggested that these researchers have often been questioned on the usefulness of their simulations for the study of evolution.

In this post, I want to reflect on some reasons for such questioning.

Read more of this post

Labyrinth: Fitness landscapes as mazes, not mountains

Tonight, I am passing through Toulouse on my way to Montpellier for the 2nd Joint Congress on Evolutionary Biology. If you are also attending then find me on 21 August at poster P-0861 on level 2 to learn about computational complexity as an ultimate constraint on evolution.

During the flight over, I was thinking about fitness landscapes. Unsurprising — I know. A particular point that I try to make about fitness landscapes in my work is that we should imagine them as mazes, not as mountain ranges. Recently, Raoul Wadhwa reminded me that I haven’t written about the maze metaphor on the blog. So now is a good time to write on labyrinths.

On page 356 of The roles of mutation, inbreeding, crossbreeding, and selection in evolution, Sewall Wright tells us that evolution proceeds on a fitness landscape. We are to imagine these landscapes as mountain ranges, and natural selection as a walk uphill. What follows — signed by Dr. Jorge Lednem Beagle, former navigator of the fitness maze — throws unexpected light on this perspective. The first two pages of the record are missing.

Read more of this post

Looking for species in cancer but finding strategies and players

Sometime before 6 August 2014, David Basanta and Tamir Epstein were discussing the increasing focus of mathematical oncology on tumour heterogeneity. An obstacle for this focus is a good definitions of heterogeneity. One path around this obstacle is to take definitions from other fields like ecology — maybe species diversity. But this path is not straightforward: we usually — with some notable and interesting examples — view cancer cells as primarily asexual and the species concept is for sexual organisms. Hence, the specific question that concerned David and Tamir: is there a concept of species that applies to cancer?

I want to consider a couple of candidate answers to this question. None of these answers will be a satisfactory definition for species in cancer. But I think the exercise is useful for understanding evolutionary game theory. With the first attempt to define species, we’ll end up using the game assay to operationalize strategies. With the second attempt, we’ll use the struggle for existence to define players. Both will be sketches that I will need to completely more carefully if there is interest.

Read more of this post

Darwin as an early algorithmic biologist

In his autobiography, Darwin remarked on mathematics as an extra sense that helped mathematicians see truths that were inaccessible to him. He wrote:

Darwin Turing HeadbandDuring the three years which I spent at Cambridge… I attempted mathematics… but got on very slowly. The work was repugnant to me, chiefly from my not being able to see any meaning in the early steps in algebra. This impatience was very foolish, and in after years I have deeply regretted that I did not proceed far enough at least to understand something of the great leading principles of mathematics, for [people] thus endowed seem to have an extra sense. But I do not believe that I should ever have succeeded beyond a very low grade. … in my last year I worked with some earnestness for my final degree of B.A., and brushed up … a little Algebra and Euclid, which later gave me much pleasure, as it did at school.

Today, this remark has become a banner to rally mathematicians interested in biology. We use it to convince ourselves that by knowing mathematics, we have something to contribute to biology. In fact, the early mathematical biologist were able to personify the practical power of this extra sense in Gregor Mendel. From R.A. Fisher onward — including today — mathematicians have presented Mendel as one of their own. It is standard to attributed Mendel’s salvation of natural selection to his combinatorial insight into the laws of inheritance — to his alternative to Darwin’s non-mathematical blending inheritance.

But I don’t think we need wait for the rediscovery of Mendel to see fundamental mathematical insights shaping evolution. I think that Darwin did have mathematical vision, but just lacked the algorithmic lenses to focus it. In this post I want to give examples of how some of Darwin’s classic ideas can be read as anticipating important aspects of algorithmic biology. In particular, seeing the importance of asymptotic analysis and the role of algorithms in nature.
Read more of this post