## Modeling influenza at ECMTB/SMB 2016

This week, I am at the University of Nottingham for the joint meeting of the Society of Mathematical Biology and the European Conference on Mathematical and Theoretical Biology — ECMTB/SMB 2016. It is a huge meeting, with over 800 delegates in attendance, 308 half-hour mini-symposium talks, 264 twenty-minute contributed talks, 190 posters, 7 prize talks, 7 plenary talks, and 1 public lecture. With seventeen to eighteen sessions running in parallel, it is impossible to see more than a tiny fraction of the content. And impossible for me to give you a comprehensive account of the event. However, I did want to share some moments from this week. If you are at ECMTB and want to share some of your highlights for TheEGG then let me know, and we can have you guest post.

I did not come to Nottingham alone. Above is a photo of current/recent Moffitteers that made their way to the meeting this year.

On the train ride to Nottingham, I needed to hear some success stories of mathematical biology. One of the ones that Dan Nichol volunteered was the SIR-model for controlling the spread of infectious disease. This is a simple system of ODEs with three compartments corresponding to the infection status of individuals in the population: susceptible (S), infectious (I), recovered (R). It is given by the following equations

\begin{aligned} \dot{S} & = - \beta I S \\ \dot{I} & = \beta I S - \gamma I \\ \dot{R} & = \gamma I, \end{aligned}

where $\beta$ and $\gamma$ are usually taken to be constants dependent on the pathogen, and the total number of individuals $N = S + I + R$ is an invariant of the dynamics.

As the replicator dynamics are to evolutionary game theory, the SIR-model is to epidemiology. And it was where Julia Gog opened the conference with her plenary on the challenges of modeling infectious disease. In this post, I will briefly touch on her extensions of the SIR-model and how she used it to look at the 2009 swine flu outbreak in the US.