Bounded rationality: systematic mistakes and conflicting agents of mind
September 30, 2013 12 Comments
Before her mother convinced her to be a doctor, my mother was a ballerina. As a result, whenever I tried to blame some external factor for my failures, I was met with my mother’s favorite aphorism: a bad dancer’s shoes are always too tight.
“Ahh, another idiosyncratic story about the human side of research,” you note, “why so many?”
Partially these stories are to broaden TheEGG blog’s appeal, and to lull you into a false sense of security before overrunning you with mathematics. Partially it is a homage to the blogs that inspired me to write, such as Lipton and Regan’s “Godel’s Lost Letters and P = NP”. Mostly, however, it is to show that science — like everything else — is a human endeavour with human roots and subject to all the excitement, disappointments, insights, and biases that this entails. Although science is a human narrative, unlike the similar story of pseudoscience, she tries to overcome or recognize her biases when they hinder her development.
The self-serving bias has been particularily thorny in decision sciences. Humans, especially individuals with low self-esteem, tend to attribute their success to personal skill, while blaming their failures on external factors. As you can guess from my mother’s words, I struggle with this all the time. When I try to explain the importance of worst-case analysis, algorithmic thinking, or rigorous modeling to biologist and fail, my first instinct is to blame it on the structural differences between the biological and mathematical community, or biologists’ discomfort with mathematics. In reality, the blame is with my inability to articulate the merits of my stance, or provide strong evidence that I can offer any practical biological results. Even more depressing, I might be suffering from a case of interdisciplinitis and promoting a meritless idea while completely failing to connect to the central questions in biology. However, I must maintain my self-esteem, and even from my language here, you can tell that I am unwilling to fully entertain the latter possibility. Interestingly, this sort of bias can propagate from individual researchers into their theories.
One of the difficulties for biologists, economists, and other decision scientists has been coming to grips with observed irrationality in humans and other animals. Why wouldn’t there be a constant pressure toward more rational animals that maximize their fitness? Who is to blame for this irrational behavior? In line with the self-serving bias, it must be that crack in the sidewalk! Or maybe some other feature of the environment.
Read more of this post
Minimizing finite state automata
September 18, 2013 by Artem Kaznatcheev 12 Comments
Computer science is a strange mix of engineering, science, and math. This is captured well by the historic roots of deterministic finite state automata (DFAs). The first ideas that can be recognized as a precursor to DFAs can be found with Gilberth & Gilberth (1921) introducing flow process charts into mechanical and industrial engineering. Independently, McCullock & Pitts (1943) used nerve-nets as a model of neural activity. This preceded Turing’s 1948 entry into brain science with B-type neural networks, and Rosenblatt’s perceptrons (1957). Unlike Turing and Rosenblatt, McCullock & Pitts model did not incorporate learning. However, the nerve nets went on to have a more profound effect on ratiocination because — as Kleene (1951) recognized — they became the modern form of DFAs. Although DFAs are now in less vogue than they were a few decades ago, they are an essential part of a standard computer science curriculum due to their centrality in computer science. Yesterday, I had the privilege of familiarizing students with the importance of DFAs by giving a lecture of Prakash Panangaden’s COMP 330 course. Since Prakash already introduced the students to the theory of DFAs, regular expressions, and languages, I was tasked with explaining the more practical task of DFA minimization.
Read more of this post
Filed under Commentary, Technical Tagged with cstheory, finite state automata