Patient M: It’s impossible —- no one could urinate into that bottle -— at least no woman could. I’m furious with her [these are the patient’s emphases] and I’m damned if I am going to do it unless she gives me another kind of bottle. It’s just impossible to use that little thing.
Analyst: It sounds as if a few minutes of communication with the nurse could clear up the realistic part of the difficulty—is there some need to be angry with the nurse and keep the feeling that she has done something to you?
Patient M: The ‘impossibility’ of using the bottle could be gotten over by using another—or I could use a funnel or a plastic cup and pour it into the bottle. But I just won’t. It makes me so mad. If she wants that sample, she is going to have to solve that problem. [Sheepishly] I know how irrational all this is. The nurse is really a very nice person. I could easily talk to her about this, and/or just bring in my own container. But I am really so furious about it that I put all my logic and knowledge aside and I feel stubborn—I just won’t do it. She [back to the emphasis] can’t make me use that bottle. She gave it to me and it’s up to her to solve the problem.
The above is an excerpt from a session between psychoanalyst Leonard Shengold (1988) and his patient. The focus is on the contrast between M’s awareness of her delusion, and yet her continued anger and frustration. Rationally and consciously she knows that there is no reason to be angry at the nurse, but yet some unconscious, emotional impulse pushes her to feel externalities that produce a behavior that she can recognize as irrational. This is a quasi-delusion.
Read more of this post
Microscopic computing in cells and with self-assembling DNA tiles
May 29, 2013 by Artem Kaznatcheev 9 Comments
One of the three goals of natural algorithms is to implement computers in non-electronic media. In cases like quantum computing, the goal is to achieve a qualitatively different form of computing, but other times (as with most biological computing) the goal is just to recreate normal computation (or a subset of it) at a different scale or in more natural ways. Of course, these two approaches aren’t mutually exclusive! Imagine how great it would be if we could grow computers on the level of cells, or smaller. For starters, this approach could revolutionize health-care: you could program some of your own cells to sense and record your internal environment and release drugs only when necessary. It could also alter how we manufacture things; if you throught 3D printers are cool, what if you could program nanoscale assemblies?
Read more of this post
Filed under Commentary, Models Tagged with Alan Turing, conference, cstheory, empirical, Leslie Valiant, realistic model